为揭示深埋大理岩在不同应力路径下的变形特征和能量演化特征,基于大理岩的常规三轴试验和卸荷三轴试验,分析了大理岩变形破坏过程中变形和能量演化的围压效应和应力路径影响。结果表明:大理岩在加卸荷条件下均表现出显著的围压效应;卸荷条件下大理岩的损伤扩容应力阈值和峰值强度较加载条件下的低;加载应力路径下能量耗散阶段占比更大,卸荷应力路径下能量聚集阶段占比更大;加卸荷条件下损伤扩容点对应的总能量和弹性应变能与围压具有良好的线性关系;针对峰值应力对应的总能量、弹性应变能及耗散能,加载应力路径下其均与围压具有正线性关系,而卸荷应力路径下均与围压成指数关系。基于以上结论,提出了确定大理岩破坏点的定量方法,结合应力-应变关系曲线,有效地解决了高围压作用下大理岩破坏点难以确定的问题,为深埋洞室围岩的稳定性分析提供依据。
Abstract
To reveal the deformation characteristics and energy evolution characteristics of deep buried marble under high stress conditions and different stress paths, we examined the confining pressure effect and stress path influence of deformation and energy evolution during the deformation and failure of marble via conventional triaxial test and unloading triaxial test. Results reveal significant confining pressure effects under both loading and unloading stress paths. The damage expansion stress threshold and peak strength of marble under unloading conditions are lower than those under loading conditions. In terms of energy evolution, the proportion of energy dissipation stage in the process of deformation and failure under loading stress path accounts for a larger proportion than that under unloading stress path, while energy accumulation stage is greater in unloading stress path. The total energy and elastic strain energy corresponding to the damage expansion point under both stress paths are in good linear relations with confining pressure. At peak stress, the total energy, elastic strain energy and dissipation energy are linear functions of the confining pressure under loading stress path, and exponential functions under unloading stress path. Based on the above conclusions, a quantitative method to determine the failure point of marble is proposed. In association with the stress-strain relationship curve, the method effectively addresses the difficulty in determining the failure point of marble under high confining pressure. The research findings offer basis for the stability analysis of the surrounding rock of deep-buried chamber.
关键词
大理岩 /
应力路径 /
变形特征 /
能量演化特征 /
破坏点
Key words
marble /
stress path /
deformation characteristics /
energy evolution characteristics /
failure point
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨静熙,黄书岭,刘忠绪.高地应力硬岩大型洞室群围岩变形破坏与岩石强度应力比关系研究[J].raybet体育在线
院报,2019,36(2):63-70.
[2] 谢和平,彭瑞东,鞠 杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
[3] 陈学章,何江达,肖明砾,等.三轴卸荷条件下大理岩扩容与能量特征分析[J].岩土工程学报,2014,36(6):1106-1112.
[4] 秦 涛,段燕伟,孙洪茹,等.砂岩三轴加载过程中力学特征与能量耗散特征[J/OL].煤炭学报:1-8[2020-08-27].https://doi.org/10.13225/j.cnki.jccs.2019.1393.
[5] 李地元,孙 志,李夕兵,等.不同应力路径下花岗岩三轴加卸载力学响应及其破坏特征[J].岩石力学与工程学报,2016,35(增刊2):3449-3457.
[6] 刘新荣,刘 俊,李栋梁,等.不同初始卸荷水平对深埋砂岩力学特性影响规律试验研究[J].岩土力学,2017,38(11):3081-3088.
[7] 温 韬,唐辉明,范志强,等.巴东组岩石加卸荷力学性质及卸荷本构模型[J].中国矿业大学学报,2018,47(4):768-779.
[8] 孙 雪,李二兵,韩 阳,等.卸荷路径下花岗岩变形与破坏特征试验研究[J].地下空间与工程学报,2020,16(3):665-679.
[9] 李建朋,高 岭,母焕胜.高应力卸荷条件下砂岩扩容特征及其剪胀角函数[J].岩土力学,2019,40(6):2119-2126.
[10]谢和平,鞠 杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
[11]谢和平,鞠 杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.
[12]丛 宇,王在泉,郑颖人,等.不同卸荷路径下大理岩破坏过程能量演化规律[J].中南大学学报(自然科学版),2016,47(9):3140-3147.
[13]陈子全,李天斌,陈国庆,等.不同应力路径下砂岩能耗变化规律试验研究[J].工程力学,2016,33(6):120-128.
[14]曾 韦,刘向君,梁利喜,等.页岩卸荷能量演化特征试验研究[J].地下空间与工程学报,2019,15(3):719-726.
[15]何明明,陈蕴生,韩铁林,等.不同应力路径下砂岩能耗特征的研究[J].岩石力学与工程学报,2015,34(增刊1):2632-2638.
[16]GB/T 50266—2013,工程岩体试验方法标准[S]. 北京:中国计划出版社,2013.
[17]HAWKINS A B, MCCONNELL B J. Sensitivity of Sandstone Strength and Deformability to Changes in Moisture Content[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 1992, 25(2):115-130.
基金
四川省科技计划项目(2019YJ0469);四川省教育厅项目(182505);教育部春晖计划项目(192641)