基于一种新的土体非线性压缩模型,建立了考虑瞬时荷载和变荷载的一维非线性固结方程。采用有限差分法获得了该固结方程的解,并通过与半解析解对比验证了差分法解的可靠性。基于该解,详细讨论了外荷载、土体初始压缩系数及压缩指数与渗透指数比值Cc/Ck对土体固结和沉降特性的影响。结果表明:Cc/Ck通过影响固结系数进而影响到土体固结速率,固结系数随Cc/Ck取值的减小而增大,因此土体固结速率随Cc/Ck取值的减小而增大;当土体初始压缩系数很小时,土体压缩性很小而接近弹性,此时可以忽略土体的非线性而直接采用Terzaghi固结解答计算;与李冰河所得固结解答相比,本文采用的非线性模型不需要考虑土体初始有效应力的影响,工程运用时相对更方便。
Abstract
A one-dimensional nonlinear consolidation equation considering transient loading and time-dependent loading is established based on a new nonlinear compression model of soil. The solution of the consolidation equation is obtained by using finite difference method, and the correctness of the difference method is verified by comparison with a semi-analytical solution. Based on the proposed solution, the effects of external load, initial compressibility coefficient of soil and Cc/Ck (ratio of compressibility index to permeability index) on soil's consolidation and settlement characteristics are discussed in detail. Results reveal that Cc/Ck affects the consolidation rate of soil by changing the consolidation coefficient, which increases with the decrease of Cc/Ck; therefore the consolidation rate of soil increases with the decrease of Cc/Ck. When the initial compressibility coefficient of soil is small, the compressibility of soil is small and close to elasticity. In this case, the nonlinear characteristics of soil can be ignored and the Terzaghi consolidation solution can be used directly. Compared with the consolidation solution obtained by Li Binghe, the nonlinear model used in this paper does not need to consider the influence of the initial effective pressure of soil, and therefore is relatively more convenient for engineering applications.
关键词
软土 /
一维固结 /
非线性 /
有限差分法 /
孔隙演变
Key words
soft soil /
one-dimensional consolidation /
nonlinear /
finite difference method /
pore evolution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]DUNCAN J M. Limitations of Conventional Analysis of Consolidation Settlement[J]. Journal of Geotechnical Engineering,1993,119(9): 1333-59.
[2] ABUEL-NAGA H M,PENDER M J. Modified Terzaghi Consolidation Curves with Effective Stress-dependent Coefficient of Consolidation[J]. Géotechnique Letters,2012, 2(2): 43-48.
[3] DAVIS E H,RAYMOND G P. A Non-linear Theory of Consolidation[J]. Géotechnique,1965,15(2): 161-173.
[4] 谢康和,周 瑾,董亚钦. 循环荷载作用下地基一维非线性固结解析解[J]. 岩石力学与工程学报,2006,25(1): 21-26.
[5] XIE K H, XIE X Y, JIANG W. A Studyon One-dimensional Nonlinear Consolidation of Double-layered Soil[J]. Computers and Geotechnics, 2002, 29(2): 151-168.
[6] 夏长青,胡安峰,崔 军,等. 饱和土成层地基一维非线性固结解析解[J]. 岩土力学,2018,39(8): 2858-2864.
[7] 宗梦繁,吴文兵,梅国雄,等. 连续排水边界条件下土体一维非线性固结解析解[J]. 岩石力学与工程学报,2018,37(12): 2829-2838.
[8] BARDEN L, BERRY P L. Consolidation of Normally Consolidated Clay[J]. Journal of the Soil Mechanics and Foundation Division,ASCE,1965,91(SM5): 15-35.
[9] MESRI G, ROKHSAR A. Theory of Consolidation for Clays[J]. Journal of the Geotechnical Engineering Division, ASCE,1974,100(8): 889-903.
[10]李冰河,王奎华,谢康和. 软粘土非线性一维固结有限差分法分析[J]. 浙江大学学报:工学版,2000,34(4): 376-381.
[11]李冰河,谢永利,谢康和,等. 软粘土非线性一维固结半解析解[J]. 西安公路交通大学学报,1999, 19(1): 24-29.
[12]李冰河,谢康和,应宏伟,等. 变荷载下软粘土非线性一维固结半解析解[J]. 岩土工程学报,1999,21(3): 288-293.
[13]黄朝煊. 软土地基一维非线性固结简化解法研究[J]. raybet体育在线
院报,2018,35(12): 90-95.
[14]LI C X,HUANG J S,WU L Z,et al. Approximate Analytical Solutions for One-dimensional Consolidation of a Clay Layer with Variable Compressibility and Permeability under a Ramp Loading[J]. International Journal of Geomechanics, 2018, 18(11): 06018032.
[15]江留慧,李传勋,杨怡青,等.变荷载下双层地基一维非线性固结近似解析解[J].岩土力学,2020,41(5): 1583-1590,1598.
[16]谢康和,郑 辉,李冰河,等. 变荷载下成层地基一维非线性固结分析[J]. 浙江大学学报:工学版,2003,37(4): 426-431.
[17]刘忠玉,纠永志,乐金朝,等. 基于非 Darcy 渗流的饱和黏土一维非线性固结分析[J]. 岩石力学与工程学报,2010,29(11): 2348-2355.
[18]LI C X, XIE K H. One-dimensional Nonlinear Consolidation of Soft Clay with the Non-Darcian Flow[J]. Journal of Zhejiang University:Science A (Applied Physics & Engineering),2013,14(6): 435-446.
[19]魏汝龙. 从实测沉降过程推算固结系数[J]. 岩土工程学报,1993,15(2): 12-19.
[20]施建勇,杨立昂,赵维炳. 考虑土体非线性特性的一维固结理论研究[J]. 河海大学学报:自然科学版,2001, 29(1): 1-5.
[21]LI B,FANG Y G,OU Z F. Asymptotic Solution for the One-dimensional Nonlinear Consolidation Equation Including the Pore Evolution Effect[J]. International Journal of Geomechanics,2018,18(10): 04018125.1-04018125.13.
[22]黄文熙. 土的工程性质[M]. 北京: 水利水电出版社,1983: 133-139.
[23]林春秀. 基于微观结构的软粘土沉降计算研究[D]. 广州: 中山大学,2004: 46-52.
基金
国家自然科学基金项目 (41972289,41672313); 国家重点基础发展计划资助“973”计划项目 (2011CB710605)