相对渗透系数与土水特征曲线(SWCC)是研究非饱和流的重要参数,利用毛细管系统研究渗流已经成为研究相对渗透系数的重要方法之一。在用毛细管系统代替土孔隙的假设上,基于杨-拉普拉斯方程和分形理论,对传统的毛细管系统含水量模型作出改进,考虑非饱和孔隙的含水量,提出一个预测非饱和土相对渗透系数的模型。利用4组试验数据对提出的相对渗透系数预测模型进行验证,用均方根偏差(RMSD)评测试验数据与预测数据之间的误差,结果表明4组数据的RMSD均<0.025,说明该模型具有预测非饱和土相对渗透系数的实际意义。
Abstract
Relative permeability coefficient and soil-water characteristic curve(SWCC) are important parameters in the study of unsaturated flow, and the capillary system has become one of the important methods to study relative permeability coefficient. On the assumption of using capillary system instead of soil pore, traditional water content model of capillary system was improved based on the Young-Laplace equation and fractal theory. A model predicting the relative permeability coefficient of unsaturated soil in consideration of the water content of unsaturated pore was proposed. Four groups of experimental data were used to verify the proposed model, and the root mean square deviation (RMSD) was used to evaluate the error between experimental data and predicted data. Results manifested that the RMSD values of all the four groups of data were smaller than 0.025, indicating that the model is of practical significance for predicting the relative permeability coefficient of unsaturated soil.
关键词
非饱和土 /
相对渗透系数 /
水土特征曲线(SWCC) /
毛细管系统 /
持水特征
Key words
unsaturated soil /
relative permeability coefficient /
soil-water characteristic curve(SWCC) /
capillary system /
water retention
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HU R, CHEN Y F, ZHOU C B. Modeling of Coupled Deformation, Water Flow and Gas Transport in Soil Slopes Subjected to Rain Infiltration[J]. Science China Technological Sciences, 2011, 54(10): 2561-2575.
[2] CHEN Y, HU R, LU W, et al. Modeling Coupled Processes of Non-steady Seepage Flow and Non-linear Deformation for a Concrete-Faced Rockfill Dam[J]. Computers & Structures, 2011, 89(13/14): 1333-1351.
[3] BURDINE N T. Relative Permeability Calculations from Pore Size Distribution Data[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1953, 98(3): 71-78.
[4] BROOKS R H, COREY A T. Hydraulic Properties of Porous Media and Their Relation to Drainage Design[J]. Transaction of ASAE, 1964, 7(1): 26-28.
[5] MUALEM Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media[J]. Water Resources Research, 1976, 12(3): 513-522.
[6] GENUCHTEN M T V.A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J].Soil Science Society of America Journal,1980,4(5):892-898.
[7] ASSOULINE S, TARTAKOVSKY D M. Unsaturated Hydraulic Conductivity Function Based on a Soil Fragmentation Process[J]. Water Resources Research, 2001, 37(5): 1309-1312.
[8] 刘 艳,于建涛. 动态土水特征曲线滞后模型研究[J]. 岩土工程学报,2021,43(1): 62-68.
[9] GHANBARIAN-ALAVIJEH B, HUNT A G. Unsaturated Hydraulic Conductivity in Porous Media: Percolation Theory[J]. Geoderma, 2012, 187: 77-84.
[10]陶高梁,吴小康,甘世朝,等. 不同初始孔隙比下非饱和黏土渗透性试验研究及模型预测[J].岩土力学,2019,40(5): 1761-1770.
[11]蔡国庆,韩博文,杨 雨,等.砂质黄土土–水特征曲线的试验研究[J].岩土工程学报,2020,42(增刊1):11-15.
[12]ASSOULINE S, TESSIER D, BRUAND A. A Conceptual Model of the Soil Water Retention Curve[J]. Water Resources Research, 1998, 34(2): 223-231.
[13]ASSOULINE S. A Model for Soil Relative Hydraulic Conductivity Based on the Water Retention Characteristic Curve[J]. Water Resources Research, 2001, 37(2): 265-271.
[14]TYLER S W, WHEATCRAFT S W. Fractal Processes in Soil Water Retention[J]. Water Resources Research, 1990, 26(5): 1047-1054.
[15]YU B, LI J, LI Z, et al. Permeabilities of Unsaturated Fractal Porous Media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642.
[16]XU P, QIU S, YU B, et al. Prediction of Relative Permeability in Unsaturated Porous Media with a Fractal Approach[J]. International Journal of Heat & Mass Transfer, 2013, 64(3): 829-837.
[17]SOLDI M, GUARRACINO L, JOUGNOT D. A Simple Hysteretic Constitutive Model for Unsaturated Flow[J]. Transport in Porous Media, 2017, 120(2): 271-285.
[18]YU B.Analysis of Flow in Fractal Porous Media[J]. Applied Mechanics Reviews, 2008, 61(5): 1239-1249.
[19]GUARRACINO L.Estimation of Saturated Hydraulic Conductivity Ks from the Van Genuchten Shape Parameter a[J].Water Resources Research,2007,43(11):335-348.
[20]BODURTHA P. Novel Techniques for Investigating the Permeation Properties of Environmentally-friendly Paper Coatings: The Influence of Structural Anisotropy on Fluid Permeation in Porous Media[D]. Plymouth: University of Plymouth, 2003.
[21]BOUSFIELD D W, KARLES G. Penetration into Three-Dimensional Complex Porous Structures[J]. Journal of Colloid and Interface Science, 2004, 270(2): 396-405.
[22]DARCY H P G. Exposition et Application des Principes à Suivre et des Formules à Employer dans les Questions de Distribution d'eau[J]. Les Fontaines Publiques de la Ville de Dijon, 1856, 11(2): 331-352.
[23]BUCKINGHAM E.Studies on the Movement of Soil Moisture[J].U.S.Dept.Agic.Bur.Soils Bull.,1907,38(3):81-107.
[24]YU B, LI J. Some Fractal Characters of Porous Media[J]. Fractals, 2001, 9(3): 365-372.
[25]MUALEM Y. A Catalogue of the Hydraulic Properties of Unsaturated Soils[J]. Technical Report Israel Institute of Technology, 1976, 21(2): 28-70.
[26]PHAM H Q, FREDLUND D G, BARBOUR S L. A Practical Hysteresis Model for the Soil-Water Characteristic Curve for Soils With Negligible Volume Change[J]. Géotechnique, 2003, 53(2): 293-298.