寒区心墙堆石坝冬季施工过程中,快速判断大面积心墙施工区防渗土料的冻融情况,是保证工程质量和快速施工的重要前提。研究发现,红外热成像测温技术可实现对心墙施工现场远距离、大范围、全仓面(超过10 000 m2)地表温度、土料冻融状况的快速检测和判定,但在现场不同环境条件下检测结果存在2 ~ 8 ℃的误差。针对该问题,基于辐射理论及红外测温原理,结合现场红外测温方式,分析得到影响心墙红外热成像仪测温误差的主要因素为心墙区的环境辐射和地表发射率。其中,环境辐射主要受气温控制。地表发射率受防渗土料压实状态(松铺、密实)以及土工布覆盖等不同地表结构形式的影响。结合现场试验数据,建立了地表辐射温度与地表接触式温度之间的修正关系。该研究为寒区工程土料冻融判别技术有重要的指导意义。
Abstract
During the construction of core rockfill dam in cold regions in winter, it is an important precondition to quickly judge the freeze-thaw state of filled soil in the core to ensure the project's quality and the rapid construction. According to field tests, the infrared thermometric technique can be used to quickly detect the surface temperature and the freeze-thaw status of the core at long distance with a large area (more than 10 000 m2). However, under different ambient conditions, the error of surface radiometric temperature measured by infrared thermometric technique was 2-8 °C compared with contact temperature. In view of this, we conclude that environmental radiation and the surface emissivity are major factors that affect the error of infrared temperature measurement, of which the environmental radiation is mainly controlled by air temperature, while surface emissivity is affected by soil surface shapes caused by compaction patterns and geotextile covering. In association with field test data, we established the correction relationship between surface radiometric temperature and contact surface temperature. The research achievement provides important guidance for freeze-thaw detection technique of soil in engineering construction in cold regions.
关键词
寒区心墙堆石坝 /
辐射温度 /
地表温度 /
误差分析 /
修正方式
Key words
core rockfill dam in cold regions /
radiometric temperature /
surface temperature /
error analysis /
correction model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] QI J L, VERMEER P A, CHENG G D. A Review of the Influence of Freeze-thaw Cycles on Soil Geotechnical Properties [J]. Permafrost and Periglacial Processes, 2006, 17: 245-252.
[2] LAI Y M, XU X T, DONG Y H, et al. Present Situation and Prospect of Mechanical Research on Frozen Soils in China [J]. Cold Regions Science and Technology, 2013, 87: 6-18.
[3] 马 巍,王大雁. 动土力学[M]. 北京: 科学出版社,2014.
[4] 王 碧,王奇峰,周 俊. 小浪底大坝防渗土料的冬季施工[J].西北水电,1999(70): 36-39.
[5] EIGENBROD K D. Effects of Cyclic Freezing and Thawing on Volume Changes and Permeability of Soft Fine-grained Soils [J]. Canadian Geotechnical Journal, 1996, 33: 529-537.
[6] ZHENG Y, MA W, MU Y H. Analysis of Soil Structures and the Mechanisms under the Action of Freezing and Thawing Cycles [C]//Proceeding of 16th International Conference on Cold Regions Engineering, Salt Lake City, UT, USA: ASCE, 2015: 25-33.
[7] LIU J K, CHANG D, YU Q M. Influence of Freeze-thaw Cycles on Mechanical Properties of a Silty Sand [J]. Engineering Geology, 2016, 210: 23-32.
[8] DL /T 5129—2013,碾压式土石坝施工规范[S]. 北京: 中国电力出版社,2013.
[9] 穆彦虎,朱忻怡,岳 攀,等.寒区大坝心墙土料冬季冻融与防控监测[J]. 冰川冻土,2018,40(4): 756-763.
[10]阙丕林.水牛家电站大坝碎石土心墙冬季施工研究[J]. 水利水电施工,1996(8): 68-74.
[11]杨 立. 红外热像仪测温计算与误差分析[J]. 红外技术,1999(4): 20-24.
[12]云 红, 孙晓刚, 原桂彬.红外热像仪精确测温技术[J].光学精密工程, 2007, 15(9):1336-1341.
[13]FAN Y, SUN X Q. A Multi-wavelength Reflectometric Technique for Normal Spectral Emissivity Measurements by a Pulse-heating Method [J]. International Journal of Thermophysics, 2003, 24(3): 849-857.
[14]谢品华,魏庆农,刘建国,等. 用双向反射法测量漆层的红外发射率[J]. 激光与红外,1992, 29(1): 42-45.
[15]MARKHAM J R, SMITH W W, HAIGIS J R, et al. FT-IR Measurements of Emissivity and Temperature During High Flux Solar Processing [J]. Journal of Solar Energy Engineering, Transactions of the ASME, 1996, 118(1): 20-29.
[16]刘 波,郑 伟,李海洋. 材料表面发射率测量技术研究进展[J]. 红外技术,2018, 48(8): 725-732.
[17]赵 军, 张 建, 杜翠兰. 红外辐射大气透过率修正函数[J] .激光与红外,2006, 36(9):866-867.
[18]HE X Q,BAI Y,PAN D L, et al. The Atmospheric Correction Algorithm for HY-1A/ COCTS [J]. Proceedings of SPIE the International Society for Optical Engineering, 2005, 5977:186-197.
[19]张 健, 杨 立, 刘慧开. 环境高温物体对红外热像仪测温误差的影响[J]. 红外技术, 2005 , 27(5):419-422.
[20]石东平,吴 超,李孜军,等. 基于反射温度补偿及入射温度补偿的红外测温影响分析[J]. 红外与激光工程,2015, 44(8): 2321-2326.
[21]黄妙芬, 刘绍民, 刘素红, 等. 地表温度和地表辐射温度差值分析[J],地球科学进展,2005, 20(10): 1075-1082.
[22]LU Z F, SUN Q, WANG J, et al. Research on the Laboratory Radiometric Calibration of the Thermal Imager[J]. Proceedings of SPIE, 2010, 7656:6.
[23]李 野. 红外热像仪精准测温技术模型研究[D].长春:长春理工大学,2010.
[24]江 灏,程国栋,王可丽. 青藏高原地表温度的比较分析[J]. 地球物理学报,2006,49 (2): 391-397.
[25]KITAYA Y, KAWAI M, TSURUYAMA J, et al. The Effect of Gravity on Surface Temperatures of Plant Leaves[J]. Plant Cell and Environment, 2003, 26:497-503.
[26]王 然,张志刚,孙保民,等. 红外测温技术在炉膛温度场检测中的应用[J]. 热力发电,2017, 46 (6): 136-140.
[27]WANG Y Q, GU Z Q, WANG S N, et al. The Temperature Measurement Technology of Infrared Thermal Imaging and Its Applications Review[C]//Proceedings of the IEEE 13th International Conference on Electronic Measurement & Instruments, Jiangsu, China, 2017.
[28]李云红. 基于红外热像仪的温度测量技术及其应用研究[D]. 哈尔滨:哈尔滨工业大学,2010.
[29]杨世铭,陶文铨. 传热学[M].4版.北京:高等教育出版社,2006.
[30]BRUTSAERT W H. On a Derivable Formula for Long-wave Radiation from Clear Skies [J]. Water Resource Research, 1975, 11 (5):742-744.
[31]刘国纬. 水文循环的大气过程[M]. 北京:科学出版社,1997.
基金
青藏高原二次科考项目(2019QZKK0905);国家自然科学基金项目(41801039,41772325);雅砻江流域水电开发有限公司科学技术项目(YLLHK-LHA-2019006)