为了探究钻孔灌注桩在竖向成孔时伴随的孔周土体径向应力的卸荷情况,基于SMP屈服准则及非相关联流动法则,探讨了初始原位应力场条件下砂土竖向钻孔孔周存在的2个塑性区的应力状态工况,并推导了该工况的应力场、位移场的解答,给出了工况判别标准。结果表明:静止侧压力系数K0、土体内摩擦角φ的选取关系到孔周塑性区半径re,rp的变化,对塑性区的产生和发展有很大影响;不同K0和泥浆重度rmud下的孔壁相对位移、孔壁应力均随着钻孔深度的增大而呈线性增大,孔壁相对位移随K0增大而增大,随rmud的增大而减小,但孔壁径向和环向应力并不随K0的改变而改变;砂土竖向成孔的孔周塑性区范围几乎沿深度不发生变化,塑性半径rp对钻孔孔壁环向应力有较大影响。提出的理论解对于砂土初始原位应力场中的灌注桩成孔卸荷问题具有一定的理论意义。
Abstract
Radial unloading-induced borehole contraction is caused in the drilling process of bored pile. On the basis of the SMP yield criterion and the non-correlated flow rule, the solution for the stress and displacement fields in two stress-state conditions of plastic zone around the vertical borehole is deduced with the coefficient K0 of lateral earth pressure considered. Parameter analysis shows that the K0 and internal friction angle φ of soil have a great influence on the emergence and development of plastic zone as well as the radius re and rp of plastic zone. The relative displacement and stress of borehole wall increase linearly along with the increase of drilling depth with different values of K0 and mud's unit weight rmud. The relative displacement of borehole wall intensifies with the growth of K0, while declines with the rising of rmud. However, the radial and circumferential stresses of borehole wall do not change with K0. In addition, the range of plastic zone around the vertical borehole hardly changes along the depth in sandy soil, and the plastic radius rp has a remarkable influence on the circumferential stress. The theoretical solution presented in this paper is of theoretical significance for the unloading problem of borehole in initial in-situ stress field of sandy soil.
关键词
砂土 /
灌注桩 /
静止侧压力系数 /
竖向成孔 /
径向卸荷 /
理论解
Key words
sand /
cast-in-place pile /
coefficient of lateral earth pressure /
vertical drilling /
radial unloading /
theoretical solution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] RAMDANE B, FAWZIA B, OUARDA B, et al. Undrained Strength of Clays Derived from Pressuremeter Tests[J]. European Journal of Environmental and Civil Engineering, 2012, 16(10): 1238-1260.
[2] HOUSLBY G T, CLARKE B G, WORTH C P. Analysis of the Unloading of a Pressuremeter in Sand[C]∥Proceedings of the Pressuremeter and Its Marine Applications: 2nd International Symposium, Philadelphia. May 2-3, 1986: 245-262.
[3] HOUSLBY G T, WITHERS N J. Analysis of the Cone Pressuremeter Test in Clay[J]. Geotechnique, 1988, 38(4): 575-587.
[4] YU H S, HOUSLBY G T. A Large Strain Analytical Solution for Cavity Contraction in Dilatant Soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1995, 19(7): 793-811.
[5] YU H S. Interpretation of Pressuremeter Unloading Tests in Sands[J]. Geotechnique, 1996, 46(1): 17-31.
[6] 温世游,陈云敏,李夕兵.考虑应变软化特性的缩孔解析解[J].岩石力学与工程学报,2002,21(增刊2):2432-2438
[7] 温世游,陈云敏,唐晓武,等.排水条件下球形空腔收缩问题的弹塑性分析[J].岩石力学与工程学报,2004,23(13):2251-2256
[8] 赵春风, 贾尚华, 赵 程. 基于统一强度准则的柱孔扩张问题及扩孔孔径分析[J]. 同济大学学报(自然科学版), 2015, 43(11):1634-1641.
[9] ZHAO C F, FEI Y, ZHAO C, et al. Analysis of Expanded Radius and Internal Expanding Pressure for Undrained Cylindrical Cavity Expansion[J]. International Journal of Geomechanics, 2018, 18(2): 04017139, 1-8.
[10]MAIR R J, TAYLOR R N. Prediction of Clay Behaviour around Tunnels Using Plasticity Solutions[C]∥Predictive Soil Mechanics: Proceedings of the Wroth Memorial Symposium. Oxford, 1993: 449-463.
[11]YU H S, ROWE R K. Plasticity Solutions for Soil Behaviour around Contracting Cavities and Tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1245-1279.
[12]ZENG Y J, YANG M, SUN Q. Elastic-plastic Solution for Cylinder Cavity Contraction and Its Application to Tunnel Engineering[J]. Journal of Tongji University, 2012, 40(10): 1480-1485.
[13]YU H S, HOULSBY G T. Finite Cavity Expansion in Dilatant Soil: Loading Analysis[J]. Geotechnique, 1991, 41(2): 173-183.
[14]ZHAO C F, FEI Y, ZHAO C, et al. Mohr-Coulomb Criterion-based Theoretical Solutions for Borehole Contraction in the Anisotropic initial Stress Condition[C]∥Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours. Shanghai, May 28-31, 2018: 442-451.
[15]LUO T, YAO Y P, MATSUOKA H. Soil Strength Equation in Plane Strain Based on SMP[J]. Rock and Soil Mechanics, 2000, 21(4): 390-393.
[16]陈祖煜,孙 平, 王玉杰,等. 采用非相关联应力应变关系的三维边坡稳定分析[J]. 中国科学:E辑, 2009(9):1511-1520.
[17]俞茂宏,杨松岩,范寿昌,等.双剪统一弹塑性本构模型及其工程应用[J].岩土工程学报,1997,19(6):2-10.
[18]杨砚宗.砂土考虑卸荷效应的钻孔灌注桩试验与理论研究[D].上海:同济大学,2011.
[19]ZHAO C F, YANG Y Z. Analytical Solution for Borehole Contraction Caused by Radial Unloading[J]. KSCE Journal of Civil Engineering, 2013, 17(1): 60-67.
基金
国家自然科学基金项目(41672265,41272295);博士后创新人才支持计划项目(BX20190121)