基于小波分解及Arima误差修正的径流预测模型及应用

包丽娜, 唐德善, 胡晓波, 楚士冀

raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 18-21.

PDF(1558 KB)
PDF(1558 KB)
raybet体育在线 院报 ›› 2018, Vol. 35 ›› Issue (12) : 18-21. DOI: 10.11988/ckyyb.20170597
水资源与环境

基于小波分解及Arima误差修正的径流预测模型及应用

  • 包丽娜1, 唐德善2, 胡晓波1, 楚士冀1
作者信息 +

Runoff Prediction Model Based on Wavelet Decomposition and Arima Error Correction: Research and Application

  • BAO Li-na1, TANG De-shan2, HU Xiao-bo1, CHU Shi-ji1
Author information +
文章历史 +

摘要

为改善传统径流预测模型对随机性时间序列的预测效果并不理想的现状,构建基于小波分解及Arima误差修正的径流预测模型。应用小波分解法将径流时间序列进行分解和重构,使非平稳、随机性的径流时间序列平稳化,对数据样本预处理后建立以相关向量机(RVM)为理论基础的径流预测模型,并采用改进粒子群算法进行核函数全局寻优,最后对模型拟合残差进行Arima误差修正。通过实例计算得到传统支持向量机(SVM)模型、RVM模型和径流预测模型的预测值平均误差分别为8.60%,9.02%和3.64%。结果表明:通过小波分解及重构方法对非平稳时间序列的预处理可有效提高预测精度,同时Arima误差修正也有很好的效果,相比于SVM模型、RVM模型,基于小波分解及Arima误差修正的径流预测模型具有更高的预测精度,在实际工程中具有一定的可行性。

Abstract

To improve the prediction effect of traditional runoff prediction model for stochastic time series, a forecast model of runoff based on wavelet decomposition and Arima error correction is proposed to achieve higher predictionprecision in this paper. The wavelet decomposition method is employed to decompose and reconstruct runoff time series, and smooth the non-stationary and random runoff time series. After data pre-processing, the runoff forecast model is built based on relevance vector machine (RVM), the improved particle swarm optimization (IPSO) algorithm is used for optimization, and finally the fitting errors are corrected by Arima model. Case study demonstrates that the average predictive errors of SVM model, RVM model and the proposed model are 8.60%, 9.02%, and 3.64%, respectively. Results prove that wavelet decomposition and reconstruction of time series could effectively enhance prediction precision; meanwhile, Arima error correction also has sound effect. The proposed model is of higher precision with the standard SVM model and RVM model, and therefore is feasible in engineering practice.

关键词

径流预测 / 小波分解 / 相关向量机 / 预测精度 / Arima误差修正

Key words

runoff prediction / wavelet decomposition / relevance vector machine / prediction accuracy / Arima error correction

引用本文

导出引用
包丽娜, 唐德善, 胡晓波, 楚士冀. 基于小波分解及Arima误差修正的径流预测模型及应用[J]. raybet体育在线 院报. 2018, 35(12): 18-21 https://doi.org/10.11988/ckyyb.20170597
BAO Li-na, TANG De-shan, HU Xiao-bo, CHU Shi-ji. Runoff Prediction Model Based on Wavelet Decomposition and Arima Error Correction: Research and Application[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 18-21 https://doi.org/10.11988/ckyyb.20170597
中图分类号: TV121.2   

参考文献

[1] JAIN S K, DAS A, SRIVASTAVA D K.Application of ANN for Reservoir Inflow Prediction and Operation[J] .Water Resources Planning and Management,1999,125(5): 263-271.
[2] 左卫兵,冯 飞,张 瞳.相关向量机及其在径流预测中的应用[J] .人民黄河,2008,(8):45-46.
[3] 周秀平,王文圣,黄伟军. 支持向量机回归模型在径流预测中的应用[J] .水电能源科学,2006,(4):4-7.
[4] QUAK E, WEYRICH N. Decomposition and Reconstruction Algorithms for Spline Wavelets on a Banded Interval [J] . Applied and Computational Harmonic Analysis, 1994, 1(3):217-231.
[5] 王乐平,孙雪岚. 黄河下游径流输沙多时间尺度特征及其耦合分析[J] . 水利水电技术,2016,47(2):58-62.
[6] 刘遵雄,张德运,孙钦东,等.基于相关向量机的电力负荷中期预测[J] .西安交通大学学报,2004,38(10):1005-1008.
[7] 杨树仁,沈洪远.基于相关向量机的机器学习算法研究与应用[J] .计算技术与自动化,2010,29(1):39-48.
[8] 王 晶.稀疏贝叶斯学习理论及应用研究[D] .西安:西安电子科技大学,2012.
[9] 刘华蓥,林玉娥,王淑云.粒子群算法的改进及其在求解约束优化问题中的应用[J] . 吉林大学学报(理学版),2005,43(4):453-489.
[10] 王正宇,王红玲.基于ARIMA模型的我国GDP分析预测[J] .对外经贸,2001,1(12):107-108.
[11] 孙冬梅,陈 玲,朱 靳.基于ARIMA模型误差修正的小波神经网络风速短期预测[J] .计算机与应用化学,2013,30(3):323-325.

基金

国家自然科学基金项目(51279047)

PDF(1558 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map