在前期研究的直梁的独立覆盖分析方法基础上,提出曲梁的独立覆盖分析方法。采用实体分析模式,只需使多项式覆盖函数中的某些项不参与计算,就能模拟梁的基本假设,从而避免了推导曲梁控制方程及相应数值计算公式的复杂性。借助随中面参数方程变化的局部坐标系,并计算该坐标系的局部坐标和方向余弦关于整体坐标的导数,就能实现精确几何描述下的曲梁分析。采用常曲率的一段圆形曲梁和变曲率的一段椭圆形曲梁的算例,验证了方法的可行性。研究方法为曲梁和下一步的曲壳分析提供了全新的途径,也是除了等几何分析方法之外的实现几何保形性的新方式。
Abstract
On the basis of straight beam analysis using Numerical Manifold Method (NMM) based on independentcovers proposed in previous study, a novel method for curved beam analysis is presented. In the mode of solid analysis, the fundamental assumptions of beams are simulated by only eliminating some terms of polynomial cover functions. And therefore the relative complexity of the derivation procedures for the governing equation and the corresponding numerical calculation formula of curved beam is avoided. By means of the local coordinate system varying with the middle plane of the beam described by parametric equations, and in subsequence by calculating the derivatives of the local coordinates and the direction cosines with respect to the global coordinates, curved beam analysis based on exact geometric description can be realized. Two examples are given to verify the feasibility of the method: one is a circular curved beam with constant curvature, and the other is an ellipse curved beam with variable curvature. The proposed method provides a new way for the analysis of curved beams and further study of curved shells. It is also a new approach for geometric shape preserving in addition to Isogeometric Analysis (IGA) method.
关键词
曲梁 /
精确几何 /
数值流形方法 /
独立覆盖 /
梁板壳分析
Key words
curved beam /
exact geometry /
Numerical Manifold Method (NMM) /
independent covers /
beam, plate and shell analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZIENKIEWICZ O C, TAYLOR R L.有限元方法[M].5版.庄 茁,岑 松,译.北京: 清华大学出版社, 2006.
[2] 王勖成.有限单元法[M].北京:清华大学出版社,2003.
[3] 潘科琪,刘锦阳. 柔性曲梁多体系统的研究现状和展望[J]. 力学进展,2011,41(6):711-721.
[4] 赵跃宇,康厚军,冯 锐,等. 曲线梁研究进展[J]. 力学进展,2006,36(2):170-186.
[5] HUGHES T J R,COTTRELL J A,BAZILEVS Y. Isogeometric Analysis:CAD,Finite Elements,NURBS,Exact Geometry and Mesh Refinement[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(39/40/41): 4135-4195.
[6] 李新康. 层合结构等几何分析研究[D]. 杭州:浙江大学,2015.
[7] 苏海东,颉志强. 梁的独立覆盖分析方法[J]. raybet体育在线
院报, 2018,35(4):143-150.
[8] SHI G H. Manifold Method of Material Analysis[C]∥U.S. Army Research Office. Transactions of the Ninth Army Conference on Applied Mathematics and Computing. Minneapolis, Minnesota, U.S.A, June 18-21,1991: 51-76.
[9] BABUSKA I, MELENK J M. The Partition of Unity Method[J]. International Journal for Numerical Methods in Engineering, 1997, 40:727-758.
[10]祁勇峰, 苏海东, 崔建华.部分重叠覆盖的数值流形方法初步研究[J].raybet体育在线
院报, 2013,30(1):65-70.
[11]SU Hai-dong, QI Yong-feng, GONG Ya-qi, et al. Preliminary Research of Numerical Manifold Method Based on Partly Overlapping Rectangular Covers[C]∥DDA Commission of International Society for Rock Mechanics. Proceedings of the 11th International Conference on Analysis of Discontinuous Deformation (ICADD11), Fukuoka, Japan, August 27-29, 2013, London: Taylor & Francis Group, 2013: 341-347.
[12]苏海东, 祁勇峰, 龚亚琦,等. 任意形状覆盖的数值流形方法初步研究[J]. raybet体育在线
院报, 2013, 30(12): 91-96.
[13]苏海东,颉志强,龚亚琦,等.基于独立覆盖的流形法收敛性及覆盖网格特性[J]. raybet体育在线
院报,2016,33(2):131-136.
[14]王敏中,王 炜,武际可.弹性力学教程(修订版)[M].北京:北京大学出版社,2011.
基金
中央级公益性科研院所基本科研业务费项目(CKSF2016022/CL, CKSF2016266/CL)