水体悬浮泥沙粒度是重要的水质参数之一,影响着水体的遥感反射率。研究两者之间的关系对于内陆湖泊水环境遥感监测具有重要意义。基于鄱阳湖实测数据,采用相关分析方法,用不同数学模型进行鄱阳湖悬浮泥沙粒度反演研究。研究结果表明:①浑浊区适合采用体积百分比众数粒径建立反演模型,清水区适合采用数量百分比中值粒径建立反演模型;②浑浊区悬沙粒度的敏感单波段是环境卫星Ⅳ波段,在清水区悬沙粒度的敏感单波段有环境卫星Ⅱ和Ⅲ波段,而环境卫星Ⅱ,Ⅲ波段比组合是整个研究区水域的敏感波段;③单波段反演模型中,幂函数适用于鄱阳湖粒度遥感反演;波段比反演模型中,多项式模型适于鄱阳湖粒度遥感反演。
Abstract
Particle size of suspended sediment, as an important parameter reflecting water quality, has an influence on the spectral reflectance of water. Study of the relationship between particle size and reflectance is of great significance to water environment monitoring in inland lakes. In this paper, the suspended sediment particle size of the Poyang Lake was retrieved using different mathematical models based on correlation analysis according to measured spectral reflectance data. Results show that: 1) volume percentage median diameter is suitable for the retrieval model for turbid area; while quantity percentage median diameter is suitable for clear water; 2) in turbid area, single band Ⅳ is the sensitive wave band; whereas in clear water, single band Ⅱ and single band Ⅲ are sensitive wave bands. In addition, the reflectance ratio of band Ⅱ to band Ⅲ is the sensitive wave band in the whole study area; 3) in the retrieval model of single band reflectance, power function is suitable for the retrieval of suspended sediment particle size in the Poyang lake; while in the model of band reflectance ratio, polynomial model is the most suitable.
关键词
鄱阳湖 /
悬浮泥沙粒度 /
遥感反射率 /
定量反演 /
敏感波段
Key words
Poyang Lake /
particle size of suspended sediment /
remote sensing reflectance ratio /
quantitative inversion /
sensitive wave band
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李占海,陈沈良,张国安.长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征[J].海洋学报,2008,30(6):154-163.
[2] 恽才兴.遥感文集[M].北京:科学出版社,1981:99-109.
[3] 刘忠华,李云梅,吕 恒,等.基于偏最小二乘法的巢湖悬浮物浓度反演[J].湖泊科学,2011,23(3):357-365.
[4] HUANG Hai-jun, LIU Yan-xia, WANG Bo. Effect of Spatial and Spectral Resolution of Images on Interpreting Intertidal Estuarine Sediment Grain Size Distributions[C]∥Proceedings of the 30th IEEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, July 25-30, 2010: 13-16.
[5] DE C, CHAKRABORTY B. Estimation of Mean Grain Size of Seafloor Sediments Using Neural Network[J]. Marine Geophysical Research,2012,33(1):45-53.
[6] FAN Hui, HUANG Hai-jun. Remote Sensing Retrieval of Suspended Particulate Matter Concentrations of Surface Waters near Radial Sand Ridges Area in the South Yellow Sea[J]. Scientia Geographica Sinica, 2011,31(2): 159-165.
[7] 刘信中,叶居新,等.江西湿地[M].北京:中国林业出版社,2000.
[8] 闵 骞,时建国,闵 聃.1956—2005年鄱阳湖入出湖悬移质泥沙特征及其变化初析[J].水文,2011, 31(1):54-58.
[9] 张 鹏,陈晓玲,陆建忠,等.基于遥感的鄱阳湖丰水期悬浮泥沙数值模拟预测[J]. 武汉大学学报(信息科学版),2017,42(3):369-376.
[10]唐军武,田国良,汪小勇,等.水体光谱测量与分析I:水面以上测量法[J].遥感学报,2004,8(1):37-44.
[11]况润元,罗 卫,张 萌.基于实测数据与遥感影像的鄱阳湖湖水体光学分类[J].长江流域资源与环境,2015,24(5):773-780.
[12]曾 群,赵 越,田礼乔,等.HJ-1A/1B卫星CCD影像水环境遥感大气校正方法评价研究——以鄱阳湖为例[J].光谱学与光谱分析,2013,32(5):1320-1326.
[13]PULLIAINEN J,KALLIO K,ELOHEIMO K,et al. A Semi-operative Approach to Lake Water Quality Retrieval from Remote Sensing Data [J].Science of the Total Environment,2001,268(1/3):79-93.
[14]陈晓玲,吴忠宜,田礼乔,等.水体悬浮泥沙动态监测的遥感反演模型对比分析——以鄱阳湖为例[J].科技导报,2007,25(6):19-22.
[15]李文红.鄱阳湖水体反射光谱分析及悬浮泥沙定量反演研究[D].赣州:江西理工大学,2014.[16]沈 芳,周云轩,李九发,等.河口悬沙粒径对遥感反射率影响的理论分析与实验观测[J].红外与毫米波学报,2009,28(3):168-172.
[17]BHARGAVA D S, MARIAM D W. Effects of Suspended Particle Size and Concentration on Reflectance Measurements[J].Photogrammetric Engineering and Remote Sensing,1991,57(5):519-529.
基金
国家自然科学基金项目(41101322);江西省自然科学基金项目(20114BAB213022);江西省教育厅科技项目(GJJ160617)