院报 ›› 2017, Vol. 34 ›› Issue (5): 68-74.DOI: 10.11988/ckyyb.20160058

• 岩土工程 • 上一篇    下一篇

基于PSO-SVM算法的高放废物处置北山预选区岩爆预测

仝跃1a,1b, 陈亮2, 黄宏伟1a,1b   

  1. 1.同济大学 a.岩土及地下工程教育部重点实验室;b.地下建筑与工程系,上海 200092;
    2.核工业北京地质研究院,北京 100029
  • 收稿日期:2016-01-19 修回日期:2016-03-01 出版日期:2017-05-01 发布日期:2017-05-17
  • 作者简介:仝 跃(1992-),男,河北衡水人,硕士研究生,主要从事地下工程风险相关研究,(电话)13795393220(电子信箱)tongyue2014@yeah.net。
  • 基金资助:
    国家国防科技工业局项目

Rockburst Prediction of Beishan Pre-selected Area for Disposal of High-level Radioactive Waste Based on PSO-SVM

TONG Yue1, 2, CHEN Liang3, HUANG Hong-wei1, 2   

  1. 1.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education,Tongji University,Shanghai 200092, China;
    2.Department of Geotechnical Engineering,Tongji University, Shanghai 200092, China;
    3.Beijing Research Institute of Uranium Geology,Beijing 100029, China
  • Received:2016-01-19 Revised:2016-03-01 Online:2017-05-01 Published:2017-05-17

摘要: 为安全处置高放废物,我国拟在花岗岩体中建造埋深500 m左右的地下实验室,用以开展处置前期的相关研究。而岩爆作为深部岩石工程中一种常见的动力破坏现象,多造成严重后果。为指导地下实验室场址的筛选以及工程的安全设计施工,基于粒子群优化的支持向量机(PSO-SVM)和100组岩爆实测数据,结合北山预选区旧井、芨芨槽、新场3个候选场址的地应力值和岩体力学参数,以洞壁围岩最大切向应力σθ、岩石单轴抗压强度σc、岩石单轴抗拉强度σt、应力指数Ts、脆性指数B作为评判参数,对不同场址处竖井和隧道开挖的岩爆风险进行预测分析。结果表明:PSO-SVM算法用于岩爆预测是可行的;在埋深300~600 m范围内新场场址处工程开挖岩爆风险最低,以新场作为我国高放废物地下实验室的建设场址是最安全的。

关键词: 高放废物处置, PSO-SVM, 岩爆预测, 北山预选区, 地下实验室

Abstract: For the safe disposal of high-level radioactive waste, China plans to establish an underground laboratory at buried depth of about 500 m in the granite rocks to carry out preliminary study on the disposal. However, as a common dynamic failure in deep rock engineering, rockburst always cause serious consequences. In the aim of guiding the selection of the underground laboratory site and the safe design and construction of the project, rockburst risks of shaft and tunnel excavation at different sites were predicted and analyzed based on support vector machine optimized by particle swarm optimization (PSO-SVM). One hundred groups of measured rockburst data as well as the geo-stress values and the mechanical parameters of rock mass of three candidate sites (Jiujing,Jijicao,and Xinchang) in Beishan pre-selected area were also taken as basis. Evaluation parameters including maximum tangential stress σθ of surrounding rock, uniaxial compressive strength σc,uniaxial tensile strengh σt,stress coefficient Ts, and brittleness coefficient B were chosen. Results show that PSO-SVM algorithm is feasible for rockburst prediction. The rockburst risk of engineering excavation in the depth of 300-600 m at Xinchang is the lowest. Therefore, selecting Xinchang as the construction site of underground laboratory for the disposal of high-level radioactive waste is the most secure.

Key words: disposal of high-level radioactive waste, PSO-SVM, rockburst prediction, Beishan pre-selected area, underground laboratory

中图分类号: 

Baidu
map