长江中游干流河道崩岸特征与机理研究综述

龚志龙, 李凌云, 王洪杨, 邓彩云, 郭超

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (9) : 22-33.

PDF(10187 KB)
PDF(10187 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (9) : 22-33. DOI: 10.11988/ckyyb.20240625
河湖保护与治理

长江中游干流河道崩岸特征与机理研究综述

作者信息 +

Review on the Characteristics and Mechanisms of Riverbank Collapse in the Middle Reaches of the Yangtze River

Author information +
文章历史 +

摘要

冲积平原河道崩岸问题长期受到广泛关注,其机理研究对于保障沿江地区防洪安全和航道稳定等具有重要意义。为了探究长江中游干流河道崩岸机理,从时间、空间角度,简述了长江中游干流河道崩岸特征,得到崩岸沿程分布和年内分布特征。从内因、外因2个方面总结了长江中游干流河道崩岸主要影响因素及作用机理,指出在水动力条件中,纵向水流冲刷作用是崩岸发生的主导因素,同时崩岸受到环流冲刷、水位变动,河道形态等因素的影响。展望未来,应注意护岸工程水下坡度控制,确保工程坡脚稳固。在三峡大坝下游“清水下泄”持续进行的情况下,应继续预防水流冲刷引发的崩岸,加强对上述河岸的防护与日常监测,提高流域防灾减灾预警能力,保障流域人民生命财产安全和经济社会高质量发展。

Abstract

[Objectives] This paper aims to provide theoretical basis and scientific support for the prediction, early warning, and systematic prevention and control of riverbank collapse in the middle reach of mainstream Yangtze River by reviewing the characteristics and mechanisms of riverbank collapse. [Methods] By reviewing domestic and international literature, we systematically summarize current research status of riverbank collapse along the middle reach of mainstream Yangtze River, including the definition, classification, spatiotemporal distribution characteristics, and main influencing factors and their action mechanisms. Using measured data from hydrological stations including runoff, sediment load, and water level variations, we analyze the changes in water and sediment conditions before and after the operation of the Three Gorges Reservoir and their impacts on bank collapse. Particular focus is given to the mechanisms of bank collapse from both internal factors (such as the properties of riverbank soil and channel morphology) and external factors (such as hydrological and sediment conditions, water level fluctuations, vegetation coverage, and human activities). [Results] Spatiotemporal distribution characteristics: riverbank collapse along the middle reach of mainstream Yangtze River exhibits variation both longitudinally and laterally along the river; the frequency of collapse in the lower Jingjiang section is higher than that in the upper Jingjiang section, and collapses occur more often on the left bank than on the right bank. Affected by water scouring and water level fluctuations, the flood season and the recession period after the flood are peak periods for bank collapse. After the operation of the Three Gorges Reservoir, the number of river sections with strong catastrophic bank collapse decreases significantly. Internal factors of bank collapse include the composition of riverbank soil (such as the binary structure of an upper cohesive soil layer and a lower sandy soil layer), the height difference between the beach and the trough, channel sinuosity, and bank slope gradient. External factors include water and sediment conditions (such as longitudinal flow scouring, circulation erosion, and backflow scouring), water level fluctuations, vegetation coverage, and human activities (such as near-bank sand mining, sudden loading, and slope excavation). Water flow scouring is the dominant factor of bank collapse, especially the scouring effect of longitudinal flow, which directly impacts the riverbank crest and slope. Meanwhile, circulation erosion, backflow scouring, and water level fluctuations also jointly contribute to the occurrence of bank collapse. Bank protection projects achieve significant results in controlling collapse, but collapse still occasionally occurs in protected sections. Bank protection work does not significantly change the flow structure, but intensifies scouring at the unprotected toe of the slope, resulting in deep troughs approaching the bank and further aggravating riverbank erosion. [Conclusions] Bank collapse is the result of the combined effects of multiple factors. It remains necessary to conduct in-depth research on the characteristics of riverbank collapse in the middle reaches of the Yangtze River and to clarify the threshold values of influencing factors, to provide a reference for slope stability assessment and for the prediction and early warning of bank collapse. During design and construction, attention should be paid to controlling the underwater slope gradient of engineering works and to considering the impact of toe scouring on the overall stability of the riverbank. With the continued operation of hydropower stations such as Wudongde and Baihetan in the lower reaches of the Jinsha River and the ongoing implementation of soil and water conservation efforts in the basin, the “clear water scouring” in the middle and lower reaches of the Yangtze River will persist. Therefore, priority should be given to preventing bank collapse caused by strong longitudinal scouring and channel pattern adjustment in highly sinuous river sections, and to strengthen protection, routine monitoring, and early warning in these areas. Future research may further explore the effect of vegetation in stabilizing riverbanks, and enhance monitoring of river morphology, the stability of specific cross-sections, and channel evolution, in order to increase the inspection frequency and monitoring precision in high-risk reaches and areas prone to collapse.

关键词

崩岸 / 岸坡稳定性 / 河道治理 / 护岸工程 / 长江中游

Key words

bank collapse / bank slope stability / river management / revetment engineering / middle reach of the Yangtze River

引用本文

导出引用
龚志龙, 李凌云, 王洪杨, . 长江中游干流河道崩岸特征与机理研究综述[J]. raybet体育在线 院报. 2025, 42(9): 22-33 https://doi.org/10.11988/ckyyb.20240625
GONG Zhi-long, LI Ling-yun, WANG Hong-yang, et al. Review on the Characteristics and Mechanisms of Riverbank Collapse in the Middle Reaches of the Yangtze River[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(9): 22-33 https://doi.org/10.11988/ckyyb.20240625
中图分类号: TV882.2 (长江)    TV853 (河滩整治)   

参考文献

[1]
ASCE Task Committee on Hydraulic,Bank Mechanics, Modeling of River Width Adjustment. River Width Adjustment I:Processes and Mechanisms[J]. Journal of Hydraulic Engineering, 1998, 124(9):881-902.
[2]
张幸农, 蒋传丰, 应强, 等. 江河崩岸问题研究综述[J]. 水利水电科技进展, 2008, 28(3):80-83,94.
(ZHANG Xing-nong, JIANG Chuan-feng, YING Qiang, et al. Review of Research on Bank Collapse in Natural Rivers[J]. Advances in Science and Technology of Water Resources, 2008, 28(3):80-83,94. (in Chinese))
[3]
余文畴, 卢金友. 长江河道崩岸与护岸[M]. 北京: 中国水利水电出版社, 2008:5-18.
(YU Wen-chou, LU Jin-you. Bank Collapse and Bank Protection of Yangtze River Channel[M]. Beijing: China Water & Power Press, 2008: 5-18. (in Chinese))
[4]
胡维忠. 长江中下游干流河道崩岸状况及其防治[J]. 长江技术经济, 2020, 4(1): 17-20.
(HU Wei-zhong. Bank Collapse and Its Prevention in the Main Stream of the Middle and Lower Reaches of the Yangtze River[J]. Technology and Economy of Changjiang, 2020, 4(1): 17-20. (in Chinese))
[5]
孙慧雯, 夏军强, 邓珊珊, 等. 三峡工程运用后长江中游多断面水力几何关系变化特点[J]. 武汉大学学报(工学版), 2024, 57(7):863-871.
(SUN Hui-wen, XIA Jun-qiang, DENG Shan-shan, et al. Variation in the Hydraulic Geometry of the Middle Yangtze River after the Three Gorges Project Operation[J]. Engineering Journal of Wuhan University, 2024, 57(7):863-871. (in Chinese))
[6]
姚仕明, 岳红艳, 何广水, 等. 长江中游河道崩岸机理与综合治理技术[M]. 北京: 科学出版社, 2016:1-7.
(YAO Shi-ming, YUE Hong-yan, HE Guang-shui, et al. Mechanism and Comprehensive Control Technology of Bank Collapse in the Middle Reaches of the Yangtze River[M]. Beijing: Science Press, 2016:1-7. (in Chinese))
[7]
周美蓉, 夏军强, 邓珊珊, 等. 三峡工程运用后长江中游河床调整沿程变化特点[J]. 湖泊科学, 2023, 35(2):642-650.
(ZHOU Mei-rong, XIA Jun-qiang, DENG Shan-shan, et al. Longitudinal Variation of Channel Evolution along the Middle Yangtze River after the Operation of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 642-650. (in Chinese))
[8]
许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2):650-661.
(XU Quan-xi, DONG Bing-jiang, YUAN jing, et al. Scouring Effect of the Middle and Lower Reaches of the Yangtze River and Its Impact after the Impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2):650-661. (in Chinese))
[9]
雷电竞体育 . 长江中下游崩岸监测预警关键技术研发与示范报告[R]. 武汉: 雷电竞体育 , 2023.
((Changjiang River Scientific Research Institute. Report on Research and Development and Demonstration of Key Technologies for Bank Collapse Monitoring and Early Warning in the Middle and Lower Reaches of Yangtze River[R]. Wuhan: Changjiang River Scientific Research Institute, 2023. (in Chinese))
[10]
张幸农, 假冬冬, 陈长英. 长江中下游崩岸时空分布特征与规律[J]. 应用基础与工程科学学报, 2021, 29(1):55-63.
(ZHANG Xing-nong, JIA Dong-dong, CHEN Chang-ying. The Spatial and Temporal Distribution Characteristic of Bank Collapses in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Basic Science and Engineering, 2021, 29(1): 55-63. (in Chinese))
[11]
夏军强, 林芬芬, 周美蓉, 等. 三峡工程运用后荆江段崩岸过程及特点[J]. 水科学进展, 2017, 28(4):543-552.
(XIA Jun-qiang, LIN Fen-fen, ZHOU Mei-rong, et al. Bank Retreat Processes and Characteristics in the Jingjiang Reach after the Three Gorges Project Operation[J]. Advances in Water Science, 2017, 28(4):543-552. (in Chinese))
[12]
刘昭希, 王军, 周银军, 等. 长江荆江段二元结构河岸土体力学性能及崩塌试验[J]. raybet体育在线 院报, 2023, 40(2):7-13,26.
摘要
通过连续3 a对荆江崩岸情况进行现场调查、室内土工试验和概化模型试验,分析荆江崩岸特点及规律、河岸上部黏性土的物理及力学性能以及二元结构河岸崩塌过程的特点和影响因素。结果表明:荆江段崩岸分布规律主要表现为下荆江多于上荆江,左岸多于右岸;二元结构河岸崩塌过程可概括为坡脚受冲刷变陡,岸顶裂缝形成发育,岸坡渐进侵蚀,河岸失稳导致崩塌,岸坡形态趋于稳定,进入下一次河岸崩塌循环;黏性土含水率对水位变化的响应速度快于对浸泡时长的响应速度;黏性土的起动切应力为0.531 N/m<sup>2</sup>,影响黏聚力值的临界含水率约为16%,受纵向水流及土体含水率的影响,岸坡在枯水期稳定性较高,在涨水期会产生局部崩岸,洪水期和退水期时坡脚冲刷和崩岸强烈。
(LIU Zhao-xi, WANG jun, ZHOU Yin-jun, et al. Mechanical Properties and Collapse Test of Composite Riverbanks in Jingjiang Reach of Changjiang River[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2):7-13,26. (in Chinese))
[13]
夏军强, 邓珊珊, 李诺, 等. 长江中游河道崩岸预警技术及其初步应用[J]. 中国防汛抗旱, 2022, 32(9):21-26.
(XIA Jun-qiang, DENG Shan-shan, LI Nuo, et al. Early-warning Technology of Bank Erosion and its Preliminary Application in the Middle Yangtze River[J]. China Flood & Drought Management, 2022, 32(9):21-26. (in Chinese))
[14]
夏军强, 周美蓉, 许全喜, 等. 三峡工程运用后长江中游河床调整及崩岸特点[J]. 人民长江, 2020, 51(1):16-27.
(XIA Jun-qiang, ZHOU Mei-rong, XU Quan-xi, et al. Bank Collapse and River Bed Adjustment in Middle Yangtze River after Operation of Three Gorges Project[J]. Yangtze River, 2020, 51(1): 16-27. (in Chinese))
[15]
宗全利, 夏军强, 邓珊珊, 等. 荆江段二元结构河岸崩塌机理试验研究[J]. 应用基础与工程科学学报, 2016, 24(5):955-969.
(ZONG Quan-li, XIA Jun-qiang, DENG Shan-shan, et al. Experimental Study on Failure Mechanisms of Composite Bank in the Jingjiang Reach[J]. Journal of Basic Science and Engineering, 2016, 24(5):955-969. (in Chinese))
[16]
岳红艳, 姚仕明, 朱勇辉, 等. 二元结构河岸崩塌机理试验研究[J]. raybet体育在线 院报, 2014, 31(4):26-30.
摘要
以室内概化模型试验为技术手段, 首次尝试采用不同粒径的新型复合塑料沙(细颗粒层通过加入适当比例的黏合剂)模拟了天然二元结构河岸崩塌过程。试验研究表明二元结构河岸崩塌过程大体可分为5个崩塌阶段坡脚冲刷变陡阶段→滩面裂缝形成发育阶段→坡面渐进侵蚀阶段→河岸崩塌阶段→河岸冲刷趋于稳定阶段;在崩塌发生的过程中首先是下层泥沙受冲变陡, 其次是上层河岸泥沙在多种因素影响下发生着不同的崩塌形式;在同级流量条件下, 水位下降过程中河岸稳定性较水位上涨过程中明显减小。该成果可为研究江河崩岸治理措施和防洪减灾提供理论依据。
(YUE Hong-yan, YAO Shi-ming, ZHU Yong-hui, et al. Experimental Research on the Mechanism of Binary Riverbank Collapse[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(4): 26-30. (in Chinese))
The process of natural and binary riverbank collapse is simulated with compound plastic sand of different particle sizes (adding adhesive of appropriate proportion to the upper layer) through indoor generalized model tests. Test results reveal that the collapse process can be divided into five phases in general: the slope toe is scoured and steepened, and then cracks develop on the shoal surface, in subsequence, slope surface is progressively eroded, followed by riverbank collapse, and equilibrium of riverbank erosion and deposition. During the collapse, sands in the lower layers were scoured and the bank was steepened, then the upper sands collapsed in different types under various conditions. In the presence of equal water discharge, the bank stability during water level drawdown obviously decreased than that during water level raise. This research finding provides theoretical support for the harnessing of embankment collapse, flood protection and disaster reduction.
[17]
张幸农, 应强, 陈长英, 等. 江河崩岸的概化模拟试验研究[J]. 水利学报, 2009, 40(3): 263-267.
(ZHANG Xing-nong, YING Qiang, CHEN Chang-ying, et al. Generalized Model Study on Mechanism of Riverbank Failure[J]. Journal of Hydraulic Engineering, 2009, 40(3): 263-267. (in Chinese))
[18]
SAMADI A, AMIRI-TOKALDANY E, DAVOUDI M H, et al. Experimental and Numerical Investigation of the Stability of Overhanging Riverbanks[J]. Geomorphology, 2013(184): 1-19.
[19]
吕庆标, 朱勇辉, 谢亚光, 等. 河道崩岸机理研究进展[J]. raybet体育在线 院报, 2021, 38(9):7-13.
摘要
基于河道崩岸现有研究成果,对崩岸类型的划分进行了梳理,进而将河道崩岸的影响因素概括为水流动力条件、河道边界条件,及其他因素3大类,并从数值模拟和概化模型试验2个方面总结了河道崩岸研究的进展。在此基础上,分析讨论了当前河道崩岸机理研究中存在的不足,如未能全面考虑各种因素影响、崩岸数值模拟技术不够完善、概化模型试验精度需进一步提高等。最后,对未来崩岸研究工作的开展,提出了需关注的重点与建议。
( Qing-biao, ZHU Yong-hui, XIE Ya-guang, et al. Research Progress on Mechanism of River Bank Collapse[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(9): 7-13. (in Chinese))
On the basis of previous research results of river bank collapse, we reviewed the classifications of bank collapse types, summarized the influencing factors of river bank collapse into three categories inclusive of flow condition, river boundarycondition, and other factors. We further concluded the research progress of river bank collapse from aspects of numerical simulation and generalized model test. Furthermore, we analyzed and discussed the deficiencies of current research on the mechanism of river bank collapse. Such deficiencies are: factors are not considered comprehensively enough; numerical technologies lack perfection; and the accuracy of generalized model needs to be improved. Last but not the least, we put forward the key points and suggestions for future research work.
[20]
OSMAN A M, THORNE C R. Riverbank Stability Analysis. I: Theory[J]. Journal of Hydraulic Engineering, 1988, 114(2): 134-150.
[21]
夏军强, 宗全利. 长江荆江段崩岸机理及其数值模拟[M]. 北京: 科学出版社, 2015: 143-167.
(XIA Jun-qiang, ZONG Quan-li. Mechanism and Numerical Simulation of Bank Collapse in Jingjiang Section of the Yangtze River[M]. Beijing: Science Press, 2015: 143-167. (in Chinese))
[22]
假冬冬, 邵学军, 王虹, 等. 荆江典型河湾河势变化三维数值模型[J]. 水利学报, 2010, 41(12): 1451-1460.
(JIA Dong-dong, SHAO Xue-jun, WANG Hong, et al. A Three Dimensional Mathematical Modeling for the Jingjiang River[J]. Journal of Hydraulic Engineering, 2010, 41(12): 1451-1460. (in Chinese))
[23]
夏军强, 邓珊珊, 周美蓉, 等. 长江中游河道床面冲淤及河岸崩退数学模型研究及其应用[J]. 科学通报, 2019, 64(7): 725-740.
(XIA Jun-qiang, DENG Shan-shan, ZHOU Mei-rong, et al. One-dimensional Coupled Modeling of Bed Evolution and Bank Erosion Processes in the Middle Yangtze River[J]. Chinese Science Bulletin, 2019, 64(7): 725-740. (in Chinese))
[24]
刘万利, 李旺生, 李一兵, 等. 长江中游戴家洲河段崩岸特性及护岸措施研究[J]. 水道港口, 2013, 34(2):133-138.
(LIU Wan-li, LI Wang-sheng, LI Yi-bing, et al. Research on Riverbank Protection Measures of Daijiazhou Reach in Middle Yangtze River[J]. Journal of Waterway and Harbor, 2013, 34(2): 133-138. (in Chinese))
[25]
夏军强, 邓珊珊. 冲积河流崩岸机理、数值模拟及预警技术研究进展[J]. raybet体育在线 院报, 2021, 38(11):1-10.
摘要
冲积河流崩岸不仅影响河势稳定,而且威胁两岸堤防等重要涉水工程安全。近年来由于上游来水来沙变化及水库运用等影响,长江中下游及黄河下游河段河床冲刷,崩岸现象突出,增大了河道防洪压力。从崩岸机理、数值模拟及监测预警技术3个方面总结了冲积河流崩岸的研究进展,指出了仍待解决的几个关键问题。在崩岸机理方面,阐明了崩岸发生的力学条件及影响因素,但需深化研究各因素之间的相互作用。崩岸数值模拟方法的快速发展为崩岸预测提供了有效的技术手段,但需更为全面地考虑崩岸机理,并有效刻画河岸边界条件的沿程变化。在监测预警技术方面,通常以局部岸段的地形及水沙条件监测为主,崩岸预警等级划分指标及方法多以经验法为主,需建立统一的、完善的评估体系。
(XIA Jun-qiang, DENG Shan-shan. Review on Bank Erosion Processes in Alluvial Rivers: Mechanism,Modelling and Early-warning[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11):1-10. (in Chinese))
Bank erosion processes in alluvial rivers would not only affect the channel stability in local reaches, but also cause severe damages to riparian levees. Due to the changes of incoming water and sediment condition as well as reservoir operation, the middle and lower Yangtze River and the lower Yellow River have witnessed frequent bank erosion processes, which pose great pressure on flood control management. Recent research progresses were reviewed from aspects of bank erosion mechanisms, numerical modelling, field monitoring and early-warning techniques. Some key issues to be addressed are also pointed out. In terms of bank erosion mechanism, the mechanics condition and influence factors have been well expounded by previous researches, but the interaction among such factors are to be revealed in depth. The coupling of bank erosion model with hydro-and-sediment dynamic models provides an effective technique for bank erosion prediction; yet the longitudinal variation of channel boundary (soil properties, near-bank topography, vegetation etc.) needs to be characterized more effectively and the bank erosion mechanism should be considered more comprehensively. Field monitoring in practical engineering is mainly focused on the flow and sediment conditions and the near-bank topography in some local reaches. Besides, the early-warning of bank erosion is mostly based on empirical methods; a set of systematic evaluating indicators and an improved method for classifying early-warning levels should be established.
[26]
王博, 姚仕明, 岳红艳. 基于BSTEM的长江中游河道岸坡稳定性分析[J]. raybet体育在线 院报, 2014, 31(1):1-7.
摘要
以长江中游荆江出口熊家洲至城陵矶段典型断面为例,利用河岸稳定性与坡脚侵蚀模型(BSTEM)计算了2个典型断面在不同自然条件下的岸坡形态、水位条件、坡脚横向冲刷距离、植被类型及有护岸工程条件下河岸稳定的安全系数,分析了这些因素对河道岸坡稳定性的影响。结论表明:水位变化对河岸稳定性有重要影响,高、低水位岸坡稳定性与河岸组成密切相关,退水速率较快时,安全系数大幅度减小,易引起崩岸的发生;不同岸坡形态下河岸安全系数也不同,均随着坡脚横向冲刷距离的增大而减小;坡面实施护岸工程与植被覆盖会增加岸坡的稳定性。
(WANG Bo, YAO Shi-ming, YUE Hong-yan. Stability Analysis for Typical Riverbank Slope in the Middle Reach of Yangtze River by BSTEM[J]. Journal of Changjiang River Scientific Research Institute, 2014, 31(1):1-7. (in Chinese))
[27]
宗全利, 夏军强, 邓春艳, 等. 基于BSTEM模型的二元结构河岸崩塌过程模拟[J]. 四川大学学报(工程科学版), 2013, 45(3): 69-78.
(ZONG Quan-li, XIA Jun-qiang, DENG Chun-yan, et al. Modeling of the Composite Bank Failure Process Using BSTEM[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(3): 69-78. (in Chinese))
[28]
王龙, 罗玉龙. 崩岸机理研究进展[J]. 水利规划与设计, 2013(2):49-51.
(WANG long, LUO Yu-long. Research Progress of Bank Collapse Mechanism[J]. Water Resources Planning and Design, 2013(2):49-51. (in Chinese))
[29]
张帆一, 闻云呈, 王晓俊, 等. 长江下游崩岸预警模型水动力指标阈值研究[J]. 水力发电学报, 2023, 42(6):53-64.
(ZHANG Fan-yi, WEN Yun-cheng, WANG Xiao-jun, et al. Study on Hydrodynamic Index Threshold of Early Warning Model for Bank Collapse in Lower Reaches of Yangtze River[J]. Journal of Hydroelectric Engineering, 2023, 42(6): 53-64. (in Chinese))
[30]
陈引川, 彭海鹰. 长江下游大窝崩的发生及防护[C]// 长江水利水电科学研究院.长江中下游护岸工程论文集. 武汉: 长江水利水电科学研究院, 1985:112-116.
(CHEN Yin-chuan, PENG Hai-ying. The Occurrence and Prevention of the Great Depression in the Lower Reaches of the Yangtze River[C]// Yangtze River Water Resources and Hydropower Research Institute. Essays on Bank Protection Engineering in the Middle and Lower Reaches of the Yangtze River. Wuhan: Yangtze River Water Resources and Hydropower Research Institute, 1985:112-116. (in Chinese))
[31]
闻云呈, 贾梦豪, 张帆一, 等. 长江扬中河段典型岸段江岸稳定性研究[J]. 水道港口, 2022, 43(4): 457-465, 548.
(WEN Yun-cheng, JIA Meng-hao, ZHANG Fan-yi, et al. Research on the Riverbank Stability of the Yangzhong Reach in the Yangtze River[J]. Journal of Waterway and Harbor, 2022, 43(4): 457-465, 548. (in Chinese))
[32]
邓珊珊, 夏军强, 周悦瑶, 等. 长江中游河岸形态特征及稳定性判别阈值[J]. 水力发电学报, 2024, 43(8): 112-122.
(DENG Shan-shan, XIA Jun-qiang, ZHOU Yue-yao, et al. Morphological Characteristics and Stability Threshold of Banks in the Middle Reaches of the Yangtze River[J]. Journal of Hydroelectric Engineering, 2024, 43(8): 112-122. (in Chinese))
[33]
张幸农, 蒋传丰, 陈长英, 等. 江河崩岸的影响因素分析[J]. 河海大学学报(自然科学版), 2009, 37(1): 36-40.
(ZHANG Xing-nong, JIANG Chuan-feng, CHEN Chang-ying, et al. Influencing Factors for Bank Collapse in Fluvial Rivers[J]. Journal of Hohai University (Natural Sciences), 2009, 37(1): 36-40. (in Chinese))
[34]
李长安, 杨则东, 鹿献章, 等. 长江皖江段岸崩特征、形成机理及治理对策[J]. 第四纪研究, 2008, 28(4): 578-583.
(LI Chang-an, YANG Ze-dong, LU Xian-zhang, et al. Bank Collapse Characteristics, Formation Mechanism, and Countermeasures of the Changjiang River in Anhui Province[J]. Quaternary Sciences, 2008, 28(4): 578-583. (in Chinese))
[35]
吕庆标. 冲刷条件下水位降落速率对河道崩岸的影响研究[D]. 武汉: raybet体育在线 , 2020.
( Qing-biao. Study on the Influence of Water Level Falling Rate on River Bank Collapse under Scour Condition[D]. Wuhan: Changjiang River Scientific Research Institute, 2020. (in Chinese))
[36]
姚仕明, 黎礼刚, 岳红艳, 等. 长江中下游崩岸机理与护岸工程技术回顾与展望[J]. 中国防汛抗旱, 2022, 32(9):7-15.
(YAO Shi-ming, LI Li-gang, YUE Yong-yan, et al. Review and Prospect of Bank Collapse Mechanism and Bank Protection Engineering Technology in the Middle and Lower Yangtze River[J]. China Flood & Drought Management, 2022, 32(9):7-15. (in Chinese))
[37]
唐日长, 贡炳生, 周正海, 等. 荆江大堤护岸工程初步分析研究[C]// 湖北省水利学会.湖北省水利学会第一次年会论文选编. 武汉: 湖北省水利学会, 1962:22-28.
(TANG Ri-chang, GONG Bing-sheng, ZHOU Zheng-hai, et al. Preliminary Analysis and Research on Bank Protection Project of Jingjiang Levee[C]// Hubei Water Conservancy Society. Selected Papers of the First Annual Meeting of Hubei Water Conservancy Society. Wuhan: Hubei Water Conservancy Society, 1962:22-28. (in Chinese))
[38]
周美蓉, 夏军强, 邓珊珊, 等. 低含沙量条件下张瑞瑾挟沙力公式中参数确定及其在荆江的应用[J]. 水利学报, 2021, 52(4):409-419.
(ZHOU Mei-rong, XIA Jun-qiang, DENG Shan-shan, et al. Determination of Parameters in the Zhang Rui-jin’s Formula for Sediment-transport Capacity in Low Sediment-laden Flows and its Application in the Jingjiang Reach[J]. Journal of Hydraulic Engineering, 2021, 52(4):409-419. (in Chinese))
[39]
高清洋, 李旺生, 杨阳, 等. 长江中下游河道崩岸研究现状及展望[J]. 水运工程, 2016(8):99-105.
(GAO Qing-yang, LI Wang-sheng, YANG Yang, et al. Research Progress and Prospects of Bank Collapse in Middle and Lower Reaches of the Yangtze River[J]. Port & Waterway Engineering, 2016(8): 99-105. (in Chinese))
[40]
卢金友, 朱勇辉, 岳红艳, 等. 长江中下游崩岸治理与河道整治技术[J]. 水利水电快报, 2017, 38(11):6-14.
(LU Jin-you, ZHU Yong-hui, YUE Yong-yan, et al. Technology of Bank Collapse Control and River Regulation in the Middle and Lower Reaches of Yangtze River[J]. Express Water Resources & Hydropower Information, 2017, 38(11):6-14. (in Chinese))
[41]
夏军强, 周美蓉, 邓珊珊. 河床演变学概论[M]. 北京: 中国水利水电出版社, 2023: 63-75.
(XIA Jun-qiang, ZHOU Mei-rong, DENG Shan-shan. Introduction to Riverbed Evolution[M]. Beijing: China Water & Power Press, 2023: 63-75. (in Chinese))
[42]
王延贵, 匡尚富, 陈吟. 洪水位变化对岸滩稳定性的影响[J]. 水利学报, 2015, 46(12):1398-1405.
(WANG Yan-gui, KUANG Shang-fu, CHEN Yin. Impacts of Water Level Fluctuations on Bank Stability During Flood Period[J]. Journal of Hydraulic Engineering, 2015, 46(12):1398-1405. (in Chinese))
[43]
周建军, 张曼. 近年长江中下游径流节律变化、效应与修复对策. 湖泊科学, 2018, 30(6):1471-1488.
(ZHOU Jian-jun, ZHANG Man. Effect of Dams on the Regime of the Mid-lower Yangtze River Runoff and Countermeasures[J]. Journal of Lake Sciences, 2018, 30(6):1471-1488. (in Chinese))
[44]
LIU W L. Analysis on Bank Collapse Mechanism of Typical Reaches in Middle and Lower Yangtze River[J]. Advanced Materials Research, 2013(779/780):1537-1542.
[45]
邓珊珊, 夏军强, 李洁, 等. 河道内水位变化对上荆江河段岸坡稳定性影响分析[J]. 水利学报, 2015, 46(7): 844-852.
(DENG Shan-shan, XIA Jun-qiang, LI Jie, et al. Influence of the Variation of In-channel Water Levels on the Riverbank Stability in the Upper Jingjiang Reach[J]. Journal of Hydraulic Engineering, 2015, 46(7): 844-852. (in Chinese))
[46]
马崇武, 刘忠玉, 苗天德, 等. 江河水位升降对堤岸边坡稳定性的影响[J]. 兰州大学学报, 2000(3):56-60.
(MA Chong-wu, LIU Zhong-yu, MIAO Tian-de, et al. The Influence of Water Level Changing on the Stability of River Embankment[J]. Journal of Lanzhou University(Natural Sciences), 2000(3):56-60. (in Chinese))
[47]
夏军强, 邓珊珊, 周美蓉. 荆江河段崩岸机理及多尺度模拟方法[J]. 人民长江, 2017, 48(19): 1-11.
(XIA Jun-qiang, DENG Shan-shan, ZHOU Mei-rong. Bank Collapse Mechanism of Jingjiang River Reach and Multi-scale Simulation[J]. Yangtze River, 2017, 48(19): 1-11. (in Chinese))
[48]
宗全利, 夏军强, 许全喜, 等. 上荆江河段河岸土体组成分析及岸坡稳定性计算[J]. 水力发电学报, 2014, 33(2):168-178.
(ZONG Quan-li, XIA Jun-qiang, XU Quan-xi, et al. Soil Composition Analysis and Slope Stability Calculation for Riverbanks in the Upper Jingjiang Reach[J]. Journal of Hydroelectric Engineering, 2014, 33(2):168-178. (in Chinese))
[49]
岳红艳, 吕庆标, 朱勇辉, 等. 河道岸坡水位涨落变化对崩岸影响试验研究[J]. 人民长江, 2021, 52(增刊2):15-20.
(YUE Hong-yan, Qing-biao, ZHU Yong-hui, et al. Experimental Study on Influence of River Bank Slope Water Level Fluctuation on Bank Collapse[J]. Yangtze River, 2021, 52(Supp.2):15-20. (in Chinese))
[50]
曹广晶, 王俊. 长江三峡工程水文泥沙观测与研究[M]. 北京: 科学出版社, 2015: 763-792.
(CAO Guang-jing, WANG Jun. Observation and Study on Hydrology and Sediment of the Three Gorges Project on the Yangtze River[M]. Beijing: Science Press, 2015: 763-792. (in Chinese))
[51]
卢金友. 长江中下游河道整治理论与技术[M]. 北京: 科学出版社, 2020: 63-65.
(LU Jin-you. Theory and Technology of River Regulation in the Middle and Lower Reaches of the Yangtze River[M]. Beijing: Science Press, 2020: 63-65. (in Chinese))
[52]
BEGIN Z B. Stream Curvature and Bank Erosion: a Model Based on the Momentum Equation[J]. The Journal of Geology, 1981, 89(4): 497-504.
[53]
余文畴. 长江河道演变与治理[M]. 北京: 中国水利水电出版社, 2005:48-54.
(YU Wen-chou. Evolution and Regulation of the Yangtze River Channel[M]. Beijing: China Water & Power Press, 2005: 48-54. (in Chinese))
[54]
代加兵, 刘宏远, 戴海伦, 等. 黄河宁蒙河段塌岸侵蚀现场监测及评价研究[J]. 泥沙研究, 2015(5):63-68.
(DAI Jia-bing, LIU Hong-yuan, DAI Hai-lun, et al. Field Monitoring and Evaluate Study on Bank Erosion in the Ningxia-Inner Mongolia Reaches of the Yellow River[J]. Journal of Sediment Research, 2015(5):63-68. (in Chinese))
[55]
安徽长江河道设计研究院. 长江干流安徽段2018 年度河势分析及崩岸监测预警[R]. 安徽: 安徽长江河道设计研究院, 2018.
(Anhui Yangtze River Design and Research Institute. River Regime Analysis and Bank Collapse Monitoring and Warning in Anhui Section of the Yangtze River Main Stream in 2018[R]. Anhui: Anhui Yangtze River Design and Research Institute, 2018. (in Chinese))
[56]
唐金武, 邓金运, 由星莹, 等. 长江中下游河道崩岸预测方法[J]. 四川大学学报(工程科学版), 2012, 44(1):75-81.
(TANG Jin-wu, DENG Jin-yun, YOU Xing-ying, et al. Forecast Method for Bank Collapse in Middle and Lower Yangtze River[J]. Advanced Engineering Sciences, 2012, 44(1):75-81. (in Chinese))
[57]
李义天, 唐金武, 朱玲玲, 等. 长江中下游河道演变与航道整治[M]. 北京: 科学出版社, 2012: 108-130.
(LI Yi-tian, TANG Jin-wu, ZHU Ling-ling, et al. River Evolution and Waterway Regulation in the Middle and Lower Reaches of the Yangtze River[M]. Beijing: Science Press, 2012: 108-130. (in Chinese))
[58]
齐家露, 夏军强, 邓珊珊, 等. 三峡工程运行后荆江河段坡比的统计特征及稳定坡比确定[J]. 武汉大学学报(工学版), 2022, 55(10):993-1001.
(QI Jia-lu, XIA Jun-qiang, DENG Shan-shan, et al. Statistical Characteristics of Bank Slope in the Jingjiang Reach and Determination of Critical Slope after the Three Gorges Project Operation[J]. Engineering Journal of Wuhan University, 2022, 55(10):993-1001. (in Chinese))
[59]
顾轩, 姜月华, 杨国强, 等. 河流崩岸研究进展和问题讨论[J]. 地球科学前沿, 2021, 11(2):213-223.
(GU Xuan, JIANG Yue-hua, YANG Guo-qiang, et al. Research Progress and Problem Discussion on River Bank Collapse[J]. Advances in Geosciences, 2021, 11(2):213-223. (in Chinese))
[60]
TORREY V H. Retrogressive Failures in Sand Deposits of the Mississippi River. Report 2:Empirical Evidence in Support of the Hypothesized Failure Mechanism and Development of the Levee Safety Flow Slide Monitoring System[R]. Mississippi: US Army Corps of Engineers, 1988.
[61]
宗全利, 冯博, 蔡杭兵, 等. 塔里木河流域河岸植被根系护坡的力学机制[J]. 岩石力学与工程学报, 2018, 37(5):1290-1300.
(ZONG Quan-li, FENG Bo, CAI Hang-bing, et al. Mechanism of Riverbank Protection by Desert Riparian Vegetation Roots in Tarim River Basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1290-1300. (in Chinese))
[62]
唐瑞泽. 塔里木河岸坡植被对河岸冲刷影响的定量分析及过程模拟[D]. 石河子: 石河子大学, 2023.
(TANG Rui-ze. Quantitative Analysis and Process Simulation of Vegetation Influence on Tarim River Bank Erosio[D]. Shihezi: Shihezi University, 2023. (in Chinese))
[63]
白玉川, 杨树青, 徐海珏. 不同河岸植被种植密度情况下河流演化试验分析[J]. 水力发电学报, 2018, 37(11):107-120.
(BAI Yu-chuan, YANG Shu-qing, XU Hai-jue. Experiment and Analysis of River Evolution under Different Planting Densities of Riparian Vegetation[J]. Journal of Hydroelectric Engineering, 2018, 37(11):107-120. (in Chinese))
[64]
李凌云, 野博超, 刘心愿. 河道生态护坡技术研究现状[J]. 水运工程, 2022(7):205-210,245.
(LI Ling-yun, YE Bo-chao, LIU Xin-yuan. Research Status of River Ecologicalslope Protection Technology[J]. Port & Waterway Engineering, 2022(7):205-210,245. (in Chinese))
[65]
水利部长江水利委员会. 长江中下游护岸工程65年[J]. 水利水电快报, 2017, 38(11): 1-5.
Changjiang Water Resources Commission of the Ministry of Water Resources. 65 Years of Revetment Engineering in the Middle and Lower Reaches of the Yangtze River[J]. Express Water Resources & Hydropower Information, 2017, 38(11): 1-5. (in Chinese))
[66]
高清洋, 杨阳, 程小兵, 等. 长江中下游护岸工程段崩岸原因分析:以彭兴洲—江心洲段为例[J]. 水道港口, 2017, 38(1):38-44.
(GAO Qing-yang, YANG Yang, CHENG Xiao-bing, et al. Cause Analysis of Revetments Collapse in Pengxingzhou-Jiangxinzhou Reach of the Yangtze River[J]. Journal of Waterway and Harbor, 2017, 38(1):38-44. (in Chinese))
[67]
黄召彪, 王朋超, 陈一梅. 长江中下游护岸服役状态评价[J]. 水道港口, 2022, 43(4):471-476.
(HUANG Zhao-biao, WANG Peng-chao, CHEN Yi-mei. Evaluation of Service Performance of Revetment in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Waterway and Harbor, 2022, 43(4):471-476. (in Chinese))
[68]
夏军强, 周悦瑶, 邓珊珊, 等. 荆江段抛石护岸稳定性计算及其影响因素分析[J]. 水力发电学报, 2022, 41(8):1-11.
(XIA Jun-qiang, ZHOU Yue-yao, DENG Shan-shan, et al. Calculations of Bank Stability of Riprap Revetment in Jingjiang Reach and Analysis of its Influencing Factors[J]. Journal of Hydroelectric Engineering, 2022, 41(8):1-11. (in Chinese))

基金

国家重点研发计划项目(2023YFC3209500)
湖南省水利科技项目(XSKJ2023059-58)
国家自然科学基金项目(U2240206)
中央级公益性科研院所基本科研业务费专项(CKSF2024326/HL)

编辑: 占学军
PDF(10187 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map