基于粒径分布和薄膜水的土水特征曲线模型

朱世旺, 李双洋, 姜琪, 赵建沅, 周尚琪, 刘慧颖

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (5) : 200-207.

PDF(6976 KB)
PDF(6976 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (5) : 200-207. DOI: 10.11988/ckyyb.20240089
岩土工程

基于粒径分布和薄膜水的土水特征曲线模型

作者信息 +

Soil-Water Characteristic Curve Model Based on Particle Size Distribution and Pellicular Water

Author information +
文章历史 +

摘要

利用粒径分布曲线预测土水特征曲线(SWCC)的传统模型在计算含水量时通常需要将粒径分布曲线分段处理,且往往忽略了土壤颗粒表面的薄膜水含量,导致预测精度受到很大限制。为了解决以上问题,基于颗粒点对点接触假设,使用威布尔函数描述粒径分布曲线,通过杨拉普拉斯方程确定毛细水含水量,并考虑薄膜水含量的影响,建立一个基于粒径分布和薄膜水的土水特征曲线模型。然后选取非饱和土壤数据库(UNSODA)中26个土壤样品进行验证,并与AP模型和MV模型进行对比分析。结果表明,相较于AP模型和MV模型,新模型能更准确地预测土壤的土水特征曲线,且由于考虑了薄膜水含量,使新模型在高基质吸力段的含水量预测误差显著减小。

Abstract

Traditional models for predicting soil-water characteristic curve (SWCC) based on particle size distribution curve require segmentation of the curve when calculating water content and often neglect the pellicular water (also known as film water) content on the surface of soil particles. This significantly limits the prediction accuracy. To address these issues, this study assumes point-to-point contact between particles, employs the Weibull function to characterize the particle size distribution curve, determines the capillary water content using the Young - Laplace equation, and accounts for the influence of film water content. On this basis, a new SWCC model considering particle size distribution and film water is developed. Twenty-six soil samples from the Unsaturated Soil Database (UNSODA) are selected for validation and comparison with the AP and MV models. The results indicate that the proposed model based on particle size distribution and film water can predict the SWCC more accurately and significantly reduces the prediction error of water content in the high-matrix-suction section.

关键词

土水特征曲线 / 粒径分布曲线 / 毛细水 / 薄膜水 / 含水量预测

Key words

soil-water characteristic curve / particle size distribution curve / capillary water / film water / water content prediction

引用本文

导出引用
朱世旺, 李双洋, 姜琪, . 基于粒径分布和薄膜水的土水特征曲线模型[J]. raybet体育在线 院报. 2025, 42(5): 200-207 https://doi.org/10.11988/ckyyb.20240089
ZHU Shi-wang, LI Shuang-yang, JIANG Qi, et al. Soil-Water Characteristic Curve Model Based on Particle Size Distribution and Pellicular Water[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(5): 200-207 https://doi.org/10.11988/ckyyb.20240089
中图分类号: TU43 (土力学)   

参考文献

[1]
陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
(CHEN Zheng-han. On Basic Theories of Unsaturated Soils and Special Soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272.) (in Chinese)
[2]
李志清, 李涛, 胡瑞林, 等. 非饱和土土水特征曲线(SWCC)测试与预测[J]. 工程地质学报, 2007, 15(5):700-707.
(LI Zhi-qing, LI Tao, HU Rui-lin, et al. Methods for Testing and Predicting of SWCC in Unsaturated Soil Mechanics[J]. Journal of Engineering Geology, 2007, 15(5): 700-707.) (in Chinese)
[3]
郭龙, 刘清秉, 王菁莪, 等. 以瞬态方法测试马兰黄土土-水特征曲线试验研究[J]. raybet体育在线 院报, 2013, 30(11): 67-71.
摘要
选取陕西省子长县原状马兰黄土为研究对象,通过瞬态脱水和吸水(TWRI)试验方法,结合Van Genuchten(1980)土-水特征曲线模型和Mualem(1976)水力传导函数模型对土样的水-力作用参数进行反演计算,并绘制土-水特征曲线。试验结果表明,土样在不同脱湿和吸湿路径状态下的土-水特征曲线具有明显的回滞效应,其中,脱湿路径的进气值与饱和体积含水量分别为26 kPa和48%,不同干湿路径下与孔径分布有关的参数变化较小。为验证TWRI试验结果的正确性,针对同一个土样,采用2 Bar体积压力板仪对其基质吸力和体积含水量的关系进行稳态试验。对比以上2种方法的试验结果,可见瞬态脱水和吸水试验方法在低吸力范围内(0~300 kPa)的试验结果与压力板仪试验结果吻合较好,且具有试验周期短,测试吸力范围大的特点。
(GUO Long, LIU Qing-bing, WANG Jing-e, et al. Soil-water Characteristic Curve of Malan Loess by Transient Water Release and Imbibitions Method[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(11): 67-71.) (in Chinese)
A transient water release and imbibitions(TWRI) method together with Van Genuchten(1980) soil-water characteristic curve models and Mualem(1976) hydraulic conductivity function model was used for the inversion calculation of soil water-force parameters and the soil water characteristic curve(SWCC). The Malan loess at Zichang County in Shaanxi Province was selected as research object. Test results showed that the SWCC of soil samples under different drying and wetting states had apparent hysteresis effect. The air-entry value and saturated volumetric water content under drying state was 26 kPa and 48% respectively. Parameters related to pore size distribution changed slightly under different drying and wetting states. In order to verify the TWRI test results, steady-state test was carried out on the same soil sample using the volume 2 Bar pressure plate apparatus to study the relationship between their matrix suction and volumetric water content. By comparing the test results, it’s found that the test results of TWRI agrees well with that of pressure plate apparatus under low suction (0-300kPa). It has short test time and wide test range of matric suction.
[4]
张洁, 阳帅, 谭泽颖, 等. 基于粒径分布曲线的非饱和砂土土水特征曲线概率预测模型[J]. 工程地质学报, 2022, 30(2): 301-308.
(ZHANG Jie, YANG Shuai, TAN Ze-ying, et al. Probabilistic Prediction of Soil Water Characteristic Curve of Unsaturated Sand Based on Particle Size distribution[J]. Journal of Engineering Geology, 2022, 30(2): 301-308.) (in Chinese)
[5]
唐延贵, 吴礼舟. 粉质砂土的土-水特征及一维应力变形试验研究[J]. raybet体育在线 院报, 2013, 30(10): 62-65.
摘要
浅层非饱和土的力学特性与其土-水特征密切相关,研究自重应力作用下土体的土-水特征曲线及一维应力变形对于边坡、基坑等工程的稳定性分析具有重要意义。采用应力相关的压力板仪对西南某地区的粉质砂土进行了干燥试验及k<sub>0</sub>固结试验。结果表明:在较低的竖向应力状态下,应力大小变化对粉质砂土的土-水特征曲线影响不大;在一定的净竖向应力状态下,粉质砂土的体积应变随吸力的增加呈线性增大;在一定的吸力状态下,粉质砂土的k<sub>0</sub>固结变形是非线弹性的,净竖向应力越大,土体的体积应变越大,孔隙比越小。
(TANG Yan-gui, WU Li-zhou. Experimental Study on the Soil-water Characteristics and Deformation of Silty Sand under 1-D Stress[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(10): 62-65.) (in Chinese)

The mechanical properties of unsaturated soils in superficial layer is closely related with soilwater characteristics. Researching on the soilwater characteristics under geostatic stress and the deformation under 1-D stress state is important for stability analysis in slope and foundation pit excavation. To investigate the effect of 1-D stress and suction on the deformation of silty sand in southwest China, we carried out drying tests and consolidation tests by using a k 0 stress controllable pressure plate apparatus. Test results show that given low vertical stress state, the stress variation in a small range has little influence on soil-water characteristic curve. Under certain net vertical stress, the volumetric strain of silty sand increases linearly with the increase of suction. Under certain suction, the consolidation deformation under k0 stress is non-linearly elastic. As net vertical stress increases,the volumetric strain increases and the void ratio reduces.

[6]
王俊, 黄岁樑. 土壤水分特征曲线模型对数值模拟非饱和渗流的影响[J]. 水动力学研究与进展A辑, 2010, 25(1): 16-22.
(WANG Jun, HUANG Sui-liang. Effect of Soil Water Characteristic Models on Numerical Modeling of Unsaturated Flow[J]. Chinese Journal of Hydrodynamics, 2010, 25(1): 16-22.) (in Chinese)
[7]
齐道坤, 潘燕敏, 张亮. 微观结构对膨胀土土-水特征曲线的影响[J]. raybet体育在线 院报, 2019, 36(4): 145-150.
摘要
为了探究膨胀土吸湿过程土-水特征曲线与微观结构变化的关系,采用渗析法和气相法对南阳原状膨胀土的持水特性进行研究,获得了土样在全吸力(0.01~309 MPa)范围内的土-水特征曲线。利用Van Genuchten模型对试验结果进行拟合;采用扫描电镜试验和压汞试验测定吸湿过程中土样微观结构的变化,从微观的层面对膨胀土土-水特征曲线的趋势进行分析。研究表明:在吸湿过程中,膨胀土的微孔隙和大孔隙体积含量增多,小孔隙体积含量减少;吸湿过程中小孔隙和微孔隙体积含量的动态变化使得膨胀土表现出在土-水特征曲线没有拐点的情况下持续增湿的特性;大孔隙体积含量的变化只影响土-水特征曲线的边界效应段,但是影响较小。
(QI Dao-kun, PAN Yan-min, ZHANG Liang. Influence of Microstructure on Soil-water Characteristic Curve of Undisturbed Expansive Soils[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(4): 145-150.) (in Chinese)
The water retention characteristics of Nanyang undisturbed weak expansive soil were tested using the osmotic technique and the vapor phase technique. The hydrating path of soil-water characteristic curve (SWCC) in the suction ranging from 0.01 to 309 MPa was gained and fitted according to a model proposed by Van Genuchten. Scanning Eelectron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP) tests were conducted to analyse the influence of microstructure modification on SWCC. Results showed that during hydrating process, the volume content of micro-pore and macro-pore increased while that of fine-pore decreased. Changes in micro-pore and fine-pore resulted in the continuous absorption of water by soils with no inflection point on the SWCC. The increase of macro-pore mainly influences the boundary effect segment of SWCC, but such influence is slight.
[8]
常波, 吴益平, 何高峰, 等. 临江Ⅱ号崩滑体土水特征曲线试验研究[J]. raybet体育在线 院报, 2012, 29(9): 53-58.
摘要
三峡水库蓄水后导致许多滑坡失稳,使人们认识到研究非饱和土性质的重要性。为研究巴东黄土坡滑坡土的非饱和性质,选取临江Ⅱ号崩滑堆积体的滑带土及滑体土作为试验对象,按其天然状态配置成重塑样,分别进行了土水特征试验及变水头渗透试验,得到了滑体土和滑带土在不同基质吸力条件下所对应的体积含水率和渗透系数;并对其土水特征试验曲线进行拟合, Fredlund-Xing方程拟合效果优于Gardner方程和指数衰减方程。同时发现土水特征试验在施加第一级基质吸力时很重要,这将影响试验曲线的形状。研究成果将对水库蓄水作用下的库岸滑坡稳定性评价有指导意义。
(CHANG Bo, WU Yi-ping, HE Gao-feng, et al. Tests for Soil-water Characteristic Curve of Riverside Slump-mass[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(9): 53-58.) (in Chinese)
Many landslides became unstable after the impoundment of the Three Gorges reservoir, raising awareness of the importance of research on unsaturated soil properties. The authors selected the slip-zone soil and slip-mass soil in riverside No.Ⅱ slump-mass as test objects to investigate the properties of unsaturated soil at Huangtupo landslide in Badong county. We reshaped the samples according to their natural states, and carried out tests on soil-water characteristics and tests on varying-waterhead permeability. The volumetric water content and permeability coefficient of both the soil samples under different matric suction conditions were obtained. Having fitted the soil-water characteristic test curves, we found that the fitted result by Fredlund-Xing's equation was superior to that by Gardner's equation and index attenuation equation. We also found that the characteristic curve could be influenced by the first-level suction during the test. The research result will serve as a guidance for the stability evaluation of reservoir bank during water storage.
[9]
余红玲. 非饱和土土水特征曲线的预测研究[D]. 武汉: 武汉理工大学, 2014.
(YU Hong-ling. Prediction of Soil-Water Characteristic Curve of Unsaturated Soil[D]. Wuhan: Wuhan University of Technology, 2014.) (in Chinese)
[10]
庹建波. 大理石粉的土水特征曲线预测[D]. 桂林: 桂林理工大学, 2022.
(TUO Jian-bo. Prediction of Soil-water Characteristic Curve of Marble Powder[D]. Guilin: Guilin University of Technology, 2022.) (in Chinese)
[11]
ARYA L M, PARIS J F. A Physicoempirical Model to Predict the Soil Moistre Characteristic from Particle-size Distribution and Bulk Density Data[J]. Soil Science Society of America Journal, 1981, 45(6): 1023-1030.
[12]
程东会, 常琛朝, 钱康, 等. 考虑薄膜水的利用介质粒度分布获取水土特征曲线的方法[J]. 水科学进展, 2017, 28(4): 534-542.
(CHENG Dong-hui, CHANG Chen-zhao, QIAN Kang, et al. Predicting the Soil-water Characteristic Curve from Soil Particle SizedistributionConsidering the Film Water[J]. Advances in Water Science, 2017, 28(4): 534-542.) (in Chinese)
[13]
MOHAMMADI M H, VANCLOOSTER M. Predicting the Soil Moisture Characteristic Curve from Particle Size Distribution with a Simple Conceptual Model[J]. Vadose Zone Journal, 2011, 10(2): 594-602.
[14]
孔郁斐, 宋二祥. 由土体级配近似确定土-水特征曲线的一种方法[J]. 岩土力学, 2015, 36(9): 2487-2493.
(KONG Yu-fei, SONG Er-xiang. A Method for Estimating Soil-water Characteristic Curve from Grain-size Distribution[J]. Rock and Soil Mechanics, 2015, 36(9): 2487-2493.) (in Chinese)
[15]
ZHAO J, LI S, WANG C, et al. A Universal Soil-Water Characteristic Curve Model Based on the Particle Size Distribution and Fractal Theory[J]. Journal of Hydrology, 2023,622:129691.
[16]
OR D, TULLERM. Liquid Retention and Interfacial Area in Variably Saturated Porous Media: Upscaling from Single-pore to Sample-scale Model[J]. Water Resources Research, 1999, 35(12): 3591-3605.
[17]
NEMES A, SCHAAP M G, LEI J F. Description of the Unsaturated Soil Hydraulic Database UNSODA Version 2.0[J]. Journal of Hydrology, 2001, 251(3/4): 151-162.
[18]
GOU L, ZHANG C, LU N, et al. A Soil Hydraulic Conductivity Equation Incorporating Adsorption and Capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149(8): 04023056.
[19]
TAO G, CHEN Y, XIAO H, et al. Determining Soil-water Characteristic Curves from Mercury Intrusion Porosimeter Test Data Using Fractal Theory[J]. Energies, 2019, 12(4): 752.
[20]
SCHEIDEGGER A E. The Physics of Flow Through Porous Media[M]. Edition 3. Toronto:Toronto University Press, 1957.
[21]
BAYAT H, RASTGO M, MANSOURI ZADEH M, et al. Particle Size Distribution Models, Their Characteristics and Fitting Capability[J]. Journal of Hydrology, 2015, 529: 872-889.
[22]
TULLER M, OR D. Water Films and Scaling of Soil Characteristic Curves at Low Water Contents[J]. Water Resources Research, 2005, 41(9): 319-335.
[23]
HAMAMOTO S, MOLDRUP P, KAWAMOTO K, et al. Two-Region Extended Archie’s Law Model for Soil Air Permeability and Gas Diffusivity[J]. Soil Science Society of America Journal, 2011, 75(3): 795-806.

基金

中国科学院“西部之光-西部交叉团队”重点实验室专项(xbzg-zdsys-202216)
中国科学院青年创新促进会优秀会员项目(Y201975)
甘肃省科技揭榜挂帅制项目-技术攻关类资助项目(21ZD8JA003)

编辑: 刘运飞
PDF(6976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map