PDF(10863 KB)
混合地形流域小流域划分命名及空间分布特征分析——以瀛汶河流域为例
陈飞勇, 陈倩勋, 江倩倩, 马淑娟, 徐景涛, 任广欣, 成小翔, 王晋
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (5) : 1-9.
PDF(10863 KB)
PDF(10863 KB)
混合地形流域小流域划分命名及空间分布特征分析——以瀛汶河流域为例
Division, Naming, and Spatial Distribution Characteristics of Small Watersheds in Mixed Terrains:A Case Study of Yingwen River Basin
以混合山地丘陵和平原地形,并包含大型水库的瀛汶河流域作为研究对象,提出了一种适用于混合地形流域中小流域的命名方法。利用WordView遥感数据和ArcGIS中的Hydrology水文分析模型,对该流域的空间分布特征进行了探索和分析。本研究得出如下结论:①共提取了1条主干流、22条一级支流、48条二级支流以及1个大型水库在内的完整水系网络;②根据本研究提出的混合地形小流域提取划分方法,最终得到了28个小流域,其中包括3个干流小流域和1个水库型小流域;③结合地形形态类型,小流域可分为坡面型、区间型和完整型,数量分别为3个、3个和22个,分别占比10.7%、10.7%和77.57%;④根据河网支流空间分布统计结果,流域上中下游的一级支流分叉数分别为0.33、0.77和1.50条二级水系/一级支流;⑤单位面积内一级支流长度与二级支流长度分布趋势相反,导致瀛汶河流域河网密度在上中下游的结果较为接近,为(0.53±0.1) km/km2。研究结果可为混合地形小流域的提取划分及空间特征分析等相关研究提供借鉴和启示。
[Objective] Focusing on the Yingwen River Basin in Shandong Province, this study aims to explore the extraction, division, naming methods for small watersheds in mixed terrains, and to analyze spatial distribution characteristics of small watershed areas and river network densities. [Methods] This study utilized high-precision SRTM-DEM data, combined with hydrological analysis modules, to extract micro-watersheds, river networks, and watershed boundaries. The optimal catchment threshold was determined using the river network density method. Micro-watersheds were merged into small watershed units based on natural catchment relationships, and named according to Specification SL 653—2013. In complex terrain areas, local corrections were made by referencing high-resolution remote sensing images and field survey results to ensure the accuracy of the division. Meanwhile, the main stream, first-order tributaries, and second-order tributaries of the Yingwen River Basin were extracted, and the characteristics such as the area of small watersheds and the density of river networks were statistically analyzed. [Results](1) This study successfully extracted 1 main stream (the main stream of Yingwen River), 22 first-order tributaries, 48 second-order tributaries, and 1 large reservoir, establishing a complete water system network. (2) A total of 28 small watersheds were merged. Small watershed areas in upstream mountains were generally smaller, while those in downstream hilly plains were relatively larger. This was mainly caused by terrain limitations combined with human activities. (3) All 28 small watersheds were named based on the proposed naming process, providing strong support for watershed management and water resource protection. (4) The river network density in Yingwen River Basin exceeded 0.2 km/km2, indicating abundant water system resources. Areas with river network densities of 0.4-0.6 km/km2 accounted for 60.71% of the total area, mainly concentrated in the middle and lower reaches. Areas with densities of 0.6-0.8 km/km2 accounted for 28.57%, distributed in the upper, middle, and lower reaches. [Conclusion] (1) The analytical framework for division, naming, and spatial distribution characteristics of small watersheds in mixed terrains proposed in this paper provides scientific methods and practical cases for similar studies. (2) Complete-type small watersheds are dominant, indicating relatively intact water systems with limited human disturbance. The spatial distribution characteristics of small watershed areas and river network densities reveal the combined influence of terrains and human activities on water system development. (3) The number of first-order tributaries in the Yingwen River Basin exhibits a significant increasing trend from upstream to downstream, reflecting the complexity of river network systems in middle and lower reaches and the promoting effect of human activities on water system development. The distribution characteristics of the length of tributaries per unit area and the density of river networks further reveal the abundance and spatial differences of water system resources within the basin.
small watershed / mixed terrain / spatial distribution characteristics / Yingwen River
| [1] |
SL 653—2013,小流域划分及编码规范[S]. 北京: 中国水利水电出版社, 2014.
(SL 653—2013, Specification for Division and Coding of Small Watershed[S]. Beijing: China Water & Power Press, 2014.) (in Chinese)
|
| [2] |
冯学兵, 任海英, 马福光, 等. 北京市平原区小流域划分技术研究[J]. 北京测绘, 2012, 26(6):34-36,59.
(
|
| [3] |
赵珂, 夏清清. 以小流域为单元的城市水空间体系生态规划方法:以州河小流域内的达州市经开区为例[J]. 中国园林, 2015, 31(1):41-45.
(
|
| [4] |
郭廷辅, 段巧甫. 径流调控理论是水土保持的精髓:四论水土保持的特殊性[J]. 中国水土保持, 2001(11):1-5.
(
|
| [5] |
姜德文. 从三个方面加强城市水土保持生态文明建设[J]. 中国水利, 2017(21): 29.
(
|
| [6] |
何毅, 蔺彬彬. 基于DEM的流域分割及子流域分类[J]. 人民黄河, 2014, 36(7): 25-28.
(
|
| [7] |
朱秀迪, 王志刚, 任斐鹏, 等. 西南岩溶区小流域划分与水文特征分析[J]. 中国水土保持, 2017(2):25-27,61.
(
|
| [8] |
陈智虎, 杨广斌, 杨春艳, 等. 典型喀斯特地貌类型区小流域划分: 以贵州省金沙县为例[J]. 中国岩溶, 2016, 35(3): 262-268.
(
|
| [9] |
吕一兵, 张斌, 陈智虎, 等. 基于DEM的不同地貌类型区小流域划分及分布特征研究:以贵州省赤水河流域为例[J]. 测绘通报, 2017(9):110-115.
(
|
| [10] |
韩培, 王志刚, 高超, 等. 基于人机交互的地形复杂区小流域划分研究: 以湖北省为例[J]. 水土保持通报, 2018, 38(6): 182-186.
(
|
| [11] |
赵娟, 周国富, 蔡雄飞, 等. 岩溶山区小流域划分与流域类型探讨: 以贵州省盘州市为例[J]. 中国水土保持, 2019(2): 27-30, 46.
(
|
| [12] |
韩立新, 胡安强, 杨晓娟. 以济南市章丘区为例浅谈小流域划分技术[J]. 水土保持应用技术, 2021(5): 51-54.
(
|
| [13] |
杨春德. 天地图:国家地理信息公共服务平台介绍与应用[EB/OL]. 自然资源部,(2023-12-21). https://shandong.tianditu.gov.cn/map.html.
|
| [14] |
麻德明, 丁绍昆, 谢宜欣. 基于DEM的北部湾入海河流汇水区及子流域划分[J]. 海洋开发与管理, 2016, 33(9): 99-103.
(
|
| [15] |
王启源, 宋宇洋. 基于DEM的湟水流域河网阈值分析[J]. 水电能源科学, 2022, 40(6): 6-9.
(
|
| [16] |
代强, 朱兰艳. 基于DEM的最佳集水面积阈值确定方法研究[J]. 中国水运(下半月), 2018(16): 166-168.
(
|
| [17] |
程中阳, 张行南, 方园皓. 集水面积阈值确定方法在嘉陵江流域的比较应用[J]. 人民长江, 2017, 48(15):25-29.
(
|
| [18] |
游宇驰, 李志威, 李希来. 1990-2011年若尔盖高原土地覆盖变化[J]. 水利水电科技进展, 2018, 38(2): 62-69.
(
|
| [19] |
|
| [20] |
|
| [21] |
闻雅. 乌苏里江-鸭绿江口段界河变迁遥感研究[D]. 长春: 吉林大学, 2014.
(
|
| [22] |
郭建, 张冠军, 马彩凤. 再生水补给景观河流用水的方案研究: 以宣化区柳川河为例[J]. 河北建筑工程学院学报, 2016, 34(1): 75-77.
(
|
| [23] |
(
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
颜明, 许炯心, 贺莉, 等. 黄河流域河网密度的空间特征及其影响因素[J]. 水土保持研究, 2018, 25(2):288-292,299.
(
|
| [30] |
蔡宏, 林国敏, 康文华. 赤水河流域中上游坡地景观特征对河流水质的影响[J]. 地理研究, 2018, 37(4):704-716.
在喀斯特地区,较大的地表坡降和坡地开发强度导致承载在地表景观上的污染物因地势和降水加倍迁移到河水中。以赤水河流域中上游为研究区,分别在全子流域、子流域坡地、子流域陡坡地三个层面上提取景观结构、景观开发强度和景观格局指数,研究各级坡地景观特征对水质的影响。结果表明:① 与总林地相比坡林地对水质潜在的“汇”作用更加显著;占总耕地面积不足1/7的陡坡耕地、却对河水中总磷(TP)和氨氮(NH<sub>3</sub>-N)浓度大小贡献显著(相关系数为0.608和0.614)。② 景观开发强度与各水质污染物指标呈现显著而稳定的正相关性,相关系数最高达0.960,它比单个景观对水质指标更具解释能力。③ 斑块形状复杂度、景观多样性、景观分离度均与水质污染物指标呈高度或显著正相关,且随着地形坡度的增大,水质污染物指标对景观散布与并列指数(IJI)和农香多样性指数(SHDI)越来越敏感。故减少对坡地尤其是陡坡地景观的不当人为干扰,对喀斯特地区流域水质保护有重要意义。
(
|
| [31] |
段金龙, 任圆圆, 张学雷. 河网密度与水体空间分布多样性的对比研究[J]. 河南农业大学学报, 2015, 49(1): 95-100.
(
|
/
| 〈 |
|
〉 |