基于多时相遥感的梁子湖水体浊度变化分析

邓实权, 田芷涵, 白婷, 谢珊, 李文凯, 顾欢欢

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 97-102.

PDF(6686 KB)
PDF(6686 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 97-102. DOI: 10.11988/ckyyb.20240201
水环境与水生态

基于多时相遥感的梁子湖水体浊度变化分析

作者信息 +

Changes of Water Turbidity in Liangzi Lake Based on Multi-temporal Remote Sensing

Author information +
文章历史 +

摘要

水体浊度是水环境的重要指标,能够直观地反映水体质量优劣。以梁子湖为研究对象,基于GEE遥感云计算平台,利用2003—2021年的Aqua MODIS遥感数据,反演了该湖的水体浊度情况,并分析了其时空变化的特征。结果表明:①梁子湖冬春季节的水体浊度高于夏秋季节,其中冬春季节的浊度高于30 NTU,而夏秋季节的浊度低于20 NTU;②梁子湖的水体浊度在近年逐渐降低,2011年前,水体浊度平均值约为30 NTU,且空间差异显著,临近陆地的区域浊度约为50 NTU,相较于平均值更高,2011年之后,水体浊度均值逐渐降低,约为25 NTU,其中临近陆地的区域浊度约为30 NTU,降幅明显;③梁子湖的水体浊度与梁子湖保护区范围内的土地覆盖类型具有相关性,其中绿地面积对其影响最大,相关系数为-0.63,绿地面积越大,浊度越低。由此可见,近10 a来,梁子湖的水体整体浊度从30 NTU下降至25 NTU,降低了16.67%,梁子湖的湖泊治理取得了较大成效。

Abstract

Water turbidity is a crucial indicator of aquatic environment as it directly reflects water quality. Taking Liangzi Lake as the research object, this paper utilized Aqua MODIS remote sensing data from 2003 to 2021 on the Google Earth Engine (GEE) remote sensing cloud computing platform to invert the water turbidity of the Liangzi lake and analyze its spatiotemporal variation characteristics. Results indicate the following: (1) Liangzi Lake features higher water turbidity in winter and spring than in summer and autumn, with turbidity exceeding 30 NTU in winter and spring and below 20 NTU in summer and autumn.(2) The water turbidity of Liangzi Lake has gradually decreased in recent years. Before 2011, the average water turbidity was approximately 30 NTU, with significant spatial variation. Areas close to land had a higher turbidity of about 50 NTU compared to the average. After 2011, the average water turbidity gradually decreased to about 25 NTU, with areas close to land experiencing a notable decrease to approximately 30 NTU. (3) The water turbidity of Liangzi Lake is correlated with land cover types within the Liangzi Lake Protected Area, with the green area having the greatest impact with a correlation coefficient of -0.63. Larger green areas correspond to lower turbidity. Over the past ten years, the overall water turbidity of Liangzi Lake has decreased from 30 NTU to 25 NTU, a reduction of 16.67%, indicating significant achievements in the management and improvement of Liangzi Lake.

关键词

水体浊度 / 多时相遥感 / Aqua MODIS遥感数据 / 时空变化 / 梁子湖

Key words

water turbidity / multi-temporal remote sensing / Aqua MODIS remote sensing data / spatio-temporal variation / Liangzi Lake

引用本文

导出引用
邓实权, 田芷涵, 白婷, . 基于多时相遥感的梁子湖水体浊度变化分析[J]. raybet体育在线 院报. 2025, 42(4): 97-102 https://doi.org/10.11988/ckyyb.20240201
DENG Shi-quan, TIAN Zhi-han, BAI Ting, et al. Changes of Water Turbidity in Liangzi Lake Based on Multi-temporal Remote Sensing[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 97-102 https://doi.org/10.11988/ckyyb.20240201
中图分类号: TP79 (遥感技术的应用)   

参考文献

[1]
李恺霖, 廖廓, 党皓飞. 内陆与近岸水体的色度学遥感研究进展[J]. 自然资源遥感, 2023, 35(1):15-26.
(LI Kai-lin, LIAO Kuo, DANG Hao-fei. Recent Progress in Chromaticity Remote Sensing of Inland and Nearshore Water Bodies[J]. Remote Sensing for Natural Resources, 2023, 35(1): 15-26.) (in Chinese)
[2]
王勇智, 乔璐璐, 鲍献文, 等. 夏季北黄海水体浊度分布特征的初步研究[J]. 中国海洋大学学报(自然科学版), 2012, 42(6): 1-8.
(WANG Yong-zhi, QIAO Lu-lu, BAO Xian-wen, et al. A Preliminary Study on Water Turbidity Distribution Characteristics in the Northern Yellow Sea in Summer[J]. Periodical of Ocean University of China, 2012, 42(6): 1-8.) (in Chinese)
[3]
肖潇, 徐坚, 赵登忠, 等. 基于国产卫星多光谱影像的河流水体浊度遥感联合反演研究[J]. raybet体育在线 院报, 2021, 38(6): 128-136.
摘要
基于集合建模思想,在水体光谱特征分析与敏感波段选择基础上,集成多种遥感反演模型优势,构建了河流水体浊度多光谱遥感联合反演模型(Combined Model-BP,CM-BP)。选择汉江中下游典型河段为研究区,利用2012—2013年原位观测数据,以具有较高时间分辨率和空间分辨率的国产卫星数据作为多光谱遥感数据源,测试评估了CM-BP浊度遥感反演模型适用性,并与传统波段组合模型进行精度比较,基于反演结果分析了研究区浊度时空分布特征。结果表明:基于集合建模思想构建的CM-BP模型的反演精度、适应性及稳定性均高于波段组合模型;从光谱分辨率、时空分辨率等角度考虑,环境与灾害监测预报小卫星星座系统、高分一号卫星、资源三号等国产卫星多光谱遥感数据是河流水体水质反演优选数据源;国产卫星遥感数据可以满足河流水体水质高精度、实时性与大尺度等遥感反演需要,为河流水环境监测研究提供数据基础。
(XIAO Xiao, XU Jian, ZHAO Deng-zhong, et al. Combined Remote Sensing Retrieval of River Turbidity Based on Chinese Satellite Data[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(6): 128-136.) (in Chinese)
Inspired by combined modeling idea, we constructed a CM-BP (Combined Model-Back Propagation) for multispectral remote-sensing retrieval of river water turbidity by integrating the advantages of multiple remote-sensing retrieval models based on analyzing spectral characteristics of water bodies and selecting sensitive bands. With the in-situ observation data in 2012-2013 in typical reaches of the middle and lower Hanjiang River as a case study, we tested and assessed the applicability of the proposed CM-BP with domestic satellite data of high temporal and spatial resolutions as multispectral remote-sensing data sources. Furthermore, we compared the proposed CM-BP with traditional band-combined models in terms of retrieval precision, and meanwhile dissected the temporal and spatial distribution characteristics of the turbidity of Hanjiang River based on retrieval results. Results demonstrated that CM-BP boasts higher retrieval accuracy, applicability and stability than band-combined models. From the perspectives of spectral, temporal and spatial resolutions, multispectral remote-sensing data of Chinese domestic satellites like environment and disaster monitoring and forecasting small-satellite constellation, GF-1, and ZY-3 can be considered as optimal data sources for water quality retrieval of river. Remote-sensing data from Chinese domestic satellites meets the demand in high-accuracy, real-time and large-scale of remote-sensing retrieval of river water quality, thus providing a data basis for environmental monitoring studies of river.
[4]
姜倩, 曹引, 赵红莉, 等. 基于航空高光谱的囫囵淖尔水体浊度反演建模[J]. 南水北调与水利科技(中英文), 2020, 18(6):101-109.
(JIANG Qian, CAO Yin, ZHAO Hong-li, et al. Modeling of Turbidity Retrieval of Hulunnaoer Based on Airborne Hyperspectral Imagery[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(6): 101-109.) (in Chinese)
[5]
冯奇, 程学军, 沈欣, 等. 利用Landsat 8 OLI进行汉江下游水体浊度反演[J]. 武汉大学学报(信息科学版), 2017, 42(5):643-647.
(FENG Qi, CHENG Xue-jun, SHEN Xin, et al. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5):643-647.) (in Chinese)
[6]
FENG L, HU C, CHEN X, et al. Human Induced Turbidity Changes in Poyang Lake between 2000 and 2010: Observations from MODIS[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): 2011JC007864.
[7]
ZHOU Q, WANG J, TIAN L, et al. Remotely Sensed Water Turbidity Dynamics and Its Potential Driving Factors in Wuhan, an Urbanizing City of China[J]. Journal of Hydrology, 2021, 593: 125893.
[8]
王建国, 陈树果, 张亭禄. 基于MODIS陆地波段的近岸水体浊度遥感方法[J]. 海洋技术学报, 2016, 35(4): 20-25.
(WANG Jian-guo, CHEN Shu-guo, ZHANG Ting-lu. Remote Sensing Retrieval Algorithm for the Turbidity in Coastal Waters Using MODIS Land Band Data[J]. Journal of Ocean Technology, 2016, 35(4):20-25.) (in Chinese)
[9]
胡艳欣, 周建伟, 冯海波, 等. 梁子湖水位波动对湖岸植被分布格局的影响[J]. 节水灌溉, 2022(8):91-95,101.
摘要
湖泊水位是影响湖泊生态系统以及植被分布格局的重要因素,湖泊水位的异常波动通常是导致湖泊生态系统退化与失稳的主要控制因子。以梁子湖为研究对象,基于对研究区1981-2000年近20年降水量与湖泊水位数据的统计分析、频率分析、以及对应时期Landsat遥感影像数据解译与植被覆盖度估算,通过对丰水年、平水年与枯水年湖泊水位变化特征与湖岸植被分布格局的探讨,分析梁子湖水位波动对湖岸植被分布格局的影响及对应关系。结果显示:①梁子湖水位自然波动遵循春季低水位、夏季高水位的节律,春季枯水期平均水位为17.50 m,夏季丰水期平均水位为18.50 m;②年内丰水期高植被覆盖度(>60%)区域面积明显大于枯水期;③丰水年、平水年和枯水年的代表年份1983年、1992年与2000年枯水期湖水位分别为17.09、17.47以及17.50 m,与多年平均水位相同的2000年高植被覆盖度区域面积最大,表明春季湖水位保持在多年平均水位更有利于湖岸带植被萌发与生长;④1983年、1992年与2000年丰水期湖水位分别为20.71、19.15和16.73 m,高植被覆盖度区域面积表现为2000年>1992年>1983年,表明2000年夏季水位的异常降低,导致湖岸带扩张,湖泊水生植物疯长,植被覆盖度显著升高,可能引发水体生态失衡。由此可见,保护与维持河湖水位自然波动的节律是河湖生态系统保护的关键。
(HU Yan-xin, ZHOU Jian-wei, FENG Hai-bo, et al. Impacts of Water Level Fluctuations on Vegetation Distribution Pattern of Lake Zone of the Liangzi Lake[J]. Water Saving Irrigation, 2022(8):91-95,101.) (in Chinese)

Lake water level is an important factor affecting the lake ecosystem and vegetation distribution pattern, and the abnormal fluctuation of lake water level is usually the main control factor leading to the instability and degradation of lake ecosystem. Based on the hydrological data and Landsat remote sensing data in recent 20 years from 1981 to 2000 in the Liangzi Lake, this study intended to revel the influence of water level fluctuations on vegetation distribution pattern of lake zone of the Liangzi Lake, through the discussion on the variation characteristics of lake water level and the distribution pattern of lake vegetation in the high, normal, and low flow years, by using statistical analysis, frequency analysis, remote sensing interpretation and vegetation coverage estimation. The results showed that: ①the natural fluctuation of water level in Liangzi Lake follows the rhythm of low water level in spring and high-water level in summer. The average water level in dry season of spring is 17.50 m and the average water level in wet season of summer is 18.50 m. ② The area of high vegetation coverage (>60%) in wet season was significantly larger than that in dry season. ③ The water levels in the high (1983), normal (1992), and low flow year (2000) were 17.09, 17.47 and 17.50 m respectively in the dry season, and the area of high vegetation coverage in 2000 with the same average water level was the largest. This indicates that maintaining the lake water level at the multi-year average water level in spring is more conducive to the germination and growth of vegetation lakeshore. ④ The lake water levels in 1983, 1992 and 2000 were 20.71, 19.15 and 16.73 m respectively in the wet season, with the area of high vegetation coverage showed 2000 > 1992 > 1983. It indicates that the abnormal decrease of water level during the wet season in 2000 summer led to the expansion of lakeshore zone and rapid growth of submerged plants in the lake. The significant increase of vegetation coverage may result in ecological imbalance of water. Therefore, protecting and maintaining the rhythm of natural fluctuation of lake water level is the key to river and lake ecosystem protection.

[10]
郑忠明, 宋广莹, 周志翔, 等. 基于植物多样性特征的武汉市城市湖泊湿地植被分类保护和恢复[J]. 生态学报, 2010, 30(24):7045-7054.
(ZHENG Zhong-ming, SONG Guang-ying, ZHOU Zhi-xiang, et al. Classified Conservation and Restoration of Vegetation in Wuhan Urban Lake Wetlands Based on Plant Diversity Characteristics[J]. Acta Ecologica Sinica, 2010, 30(24): 7045-7054.) (in Chinese)
[11]
XU X, HUANG X, ZHANG Y, et al. Long-term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing[J]. Remote Sensing, 2018, 10(9): 1441.
[12]
REYES-MUÑOZ P, PIPIA L, SALINERO-DELGADO M, et al. Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine[J]. Remote Sensing, 2022, 14(6): 1347.
[13]
LEE S, MEISTER G, FRANZ B. MODIS Aqua Reflective Solar Band Calibration for NASA’s R2018 Ocean Color Products[J]. Remote Sensing, 2019, 11(19): 2187.
[14]
SUN X, LIU J, WANG J, et al. Integrated Monitoring of Lakes’Turbidity in Wuhan, China during the COVID-19 Epidemic Using Multi-sensor Satellite Observations[J]. International Journal of Digital Earth, 2021, 14(4):443-463.
[15]
余晓敏, 邹勤. 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012, 35(6): 8-12.
(YU Xiao-min, ZOU Qin. Methods of Radiometric Normalization for Multi-temporal Remote Sensing Images: a Review[J]. Geomatics & Spatial Information Technology, 2012, 35(6): 8-12.) (in Chinese)
[16]
庞翠超, 吴时强, 赖锡军, 等. 沉水植被降低水体浊度的机理研究[J]. 环境科学研究, 2014, 27(5): 498-504.
(PANG Cui-chao, WU Shi-qiang, LAI Xi-jun, et al. Water Flow with Submerged Vegetation and Its Effect on Water Turbidity[J]. Research of Environmental Sciences, 2014, 27(5): 498-504.) (in Chinese)
[17]
YANG J, HUANG X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.

基金

鄱阳湖湿地与流域研究教育部重点实验室(江西师范大学)开放基金资助项目(PK2021006)
湖北省自然科学基金青年B项目(JCZRQN202500168)
湖北工业大学博士启动基金(XJ2024004101)

责任编辑: 刘运飞
PDF(6686 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map