三峡库区无资料支流流量遥感监测及其变化分析

娄和震, 周柏池, 宋文龙, 冯天时, 杨胜天, 孟娟, 桂荣洁, 刘宏洁

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 166-176.

PDF(10244 KB)
PDF(10244 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 166-176. DOI: 10.11988/ckyyb.20231388
水利信息化

三峡库区无资料支流流量遥感监测及其变化分析

作者信息 +

Remote Sensing Monitoring and Variation Analysis of Ungauged Tributary Discharge in Three Gorges Reservoir Area

Author information +
文章历史 +

摘要

三峡库区内支流众多,但因缺少基本水文站监测,支流的水文和水资源信息匮乏,影响了区域的水资源管理和防洪安全。为此,选择了三峡库区20条典型支流为研究对象,其中18条为无资料支流,应用自主研发的遥感水文站技术,结合卫星及无人机遥感数据构建了支流监测断面的三维数字河道模型,计算分析了2016年1月—2023年7月的河道流量、相对水位等信息。研究表明:①三峡库区内20条典型支流的河道横断面形状呈U形,属于典型的山区河流;遥感水文站技术在计算三峡库区无资料支流流量时具有良好的精度,平均NSE和R2分别可达到0.74和0.76。②在研究期内库区支流相对水位变化较小,库首、库中和库尾支流相对水位月际变化在1.2 m以下的月份占比可达93.1%、86.8%和87.4%。③库区典型无资料支流的平均流量总体平稳,但趋势分析结果表明,共有13条无资料支流的流量正在减少,库区支流流量总体上呈现下降趋势。④三峡库区20条支流年均流量和全年总流量十分丰富,年均入库流量达164.75亿m3,约占库区年入库流量的4.8%,为地区经济发展提供了有力的水资源支撑。

Abstract

The Three Gorges Reservoir (TGR) area features a large number of tributaries, but the lack of basic hydrological station monitoring leads to the scarcity of hydrological and water-resources information for these tributaries, affecting regional water resource management and flood control safety. To address this issue, we selected 20 typical tributaries in the TGR area, among which 18 are ungauged, to build 3D digital river models for these tributaries by self-developed remotely-sensed hydrological station technology along with satellite and unmanned aerial vehicle (UAV) remote-sensing data. Based on this model, we calculated the river discharges, relative water levels, water-surface widths, and other information from January 2016 to July 2023 for the monitoring sections. Results revealed that: 1) The cross-sections of 20 typical tributaries in the TGR area display U-shape, demonstrating mountainous characteristics. The remotely-sensed hydrological station technology demonstrates high accuracy in calculating ungauged tributary discharges in the TGR area, with the average Nash-Sutcliffe efficiency coefficient (NSE) and coefficient of determination (R2) reaching 0.74 and 0.76, respectively. 2) During the study period, the relative water levels of the tributaries changed minimally. The percentages of months with monthly relative water-level fluctuations below 1.2 m in the upper, middle, and lower tributaries of the reservoir were 93.1%, 86.8%, and 87.4% respectively. 3) The average discharges of typical ungauged tributaries were generally stable. However, trend analysis indicated that the discharges of 13 ungauged tributaries have being decreasing, suggesting an overall downward trend in tributary discharges in the reservoir area. 4) The 20 tributaries have abundant annual average and total discharges, with the annual average inflow reaching 16.475 billion m3, accounting for approximately 4.8% of the total annual inflow of the reservoir area, offering substantial water resource support for regional economic development.

关键词

无资料支流 / 流量 / 遥感水文站技术 / 水资源管理 / 防洪安全 / 三峡库区

Key words

ungauged tributary / river discharge / remote sensing hydrological station technology / water resource management / flood control safety / Three Gorges Reservoir area

引用本文

导出引用
娄和震, 周柏池, 宋文龙, . 三峡库区无资料支流流量遥感监测及其变化分析[J]. raybet体育在线 院报. 2025, 42(4): 166-176 https://doi.org/10.11988/ckyyb.20231388
LOU He-zhen, ZHOU Bai-chi, SONG Wen-long, et al. Remote Sensing Monitoring and Variation Analysis of Ungauged Tributary Discharge in Three Gorges Reservoir Area[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 166-176 https://doi.org/10.11988/ckyyb.20231388
中图分类号: P333   

参考文献

[1]
许典子, 张万顺, 彭虹, 等. 三峡库区水资源生态足迹及承载力时空演变研究[J]. 人民长江, 2019, 50(5): 99-106.
(XU Dian-zi, ZHANG Wan-shun, PENG Hong, et al. Spatio-temporal Analysis of Water Resources Ecological Footprint and Ecological Carrying Capacity in Three Gorges Reservoir Area[J]. Yangtze River, 2019, 50(5): 99-106.) (in Chinese)
[2]
袁旭凯, 罗丹, 许万忠, 等. 三峡库区白杨湾含多级软弱滑带滑坡变形特征与成因机制分析[J]. raybet体育在线 院报, 2023, 40(3): 143-150.
摘要
三峡库区白杨湾滑坡是典型的含多级软弱滑带的滑坡,通过航拍和现场勘查,采用钻探、物探、位移监测、数值模拟相结合的手段,查明了滑坡变形特征和多级滑带的位置, 滑坡的形成和发展受外部诱发因素与内部地质条件共同控制。钻探和物探解译揭示该滑坡为包含软弱夹层和多级滑带的深层岩土混合滑坡,分为2个滑动带。地表变形特征及位移监测表明滑坡中前部变形量相对较大,日变形量1.3~4.0 mm,处于均速变形状态,深部位移曲线显示有两处凸起位移突变点,主、次滑面特征明显,与钻孔勘探结果相互印证。数值模拟结果反映出,该滑坡在现状工况下处于欠稳定状态,在暴雨工况下滑坡安全系数显著降低,处于不稳定状态。滑坡区的地形地貌、地质构造、地层岩性为滑坡的形成提供了物源和场地条件,人类工程活动和降雨加剧了滑坡的变形。
(YUAN Xu-kai, LUO Dan, XU Wan-zhong, et al. Deformation Characteristics and Formation Mechanism of Baiyang Bay Landslide Containing Multistage Weak Slip Zones in Three Gorges Reservoir Area[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(3): 143-150.) (in Chinese)
[3]
向菲菲, 王伦澈, 姚瑞, 等. 三峡库区气候变化特征及其植被响应[J]. 地球科学, 2018, 43(增刊1):42-52.
(XIANG Fei-fei, WANG Lun-che, YAO Rui, et al. The Characteristics of Climate Change and Response of Vegetation in Three GorgesReservoir Area[J]. Earth Science, 2018, 43(Supp. 1): 42-52.) (in Chinese)
[4]
黄孟勤, 李阳兵, 李明珍, 等. 三峡库区人类活动强度与景观格局的耦合响应[J]. 生态学报, 2022, 42(10): 3959-3973.
(HUANG Meng-qin, LI Yang-bing, LI Ming-zhen, et al. Coupling Response of Human Activity Intensity and Landscape Pattern in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2022, 42(10): 3959-3973.) (in Chinese)
[5]
王雨潇, 孙营营, 张天宇, 等. 1998—2020年三峡库区最大1 h降水的时空变化特征[J]. 河海大学学报(自然科学版), 2023, 51(1): 10-18.
(WANG Yu-xiao, SUN Ying-ying, ZHANG Tian-yu, et al. Temporal and Spatial Variations of Maximum One-hour Precipitation in the Three Gorges Reservoir Region from 1998 to 2020[J]. Journal of Hohai University (Natural Sciences), 2023, 51(1): 10-18.(in Chinese ) )
[6]
孙萌, 高斌, 肖伟华, 等. 近61年三峡库区潜在蒸发量时空演变规律及其驱动因素[J]. 水电能源科学, 2022, 40(5):1-5.
(SUN Meng, GAO Bin, XIAO Wei-hua, et al. Spatiotemporal Variability of Evapotranspiration in Recent 61 Years and Its Response to Climate Change in the Three Gorges Reservoir Area[J]. Water Resources and Power, 2022, 40(5): 1-5.) (in Chinese)
[7]
王淑慧, 苏伯儒, 王云琦, 等. 近16年三峡库区径流输沙变化分析[J]. 中国水土保持科学, 2021, 19(1):69-78.
(WANG Shu-hui, SU Bo-ru, WANG Yun-qi, et al. Change Analysis of Runoff and Sediment in the Three Gorges Reservoir Region in Recent 16 Years[J]. Science of Soil and Water Conservation, 2021, 19(1): 69-78.) (in Chinese)
[8]
张冠华, 张平仓, 张晓峰. 三峡库区土地利用/覆被变化及其驱动力研究进展[J]. 中国水土保持, 2017(5):47-51.
(ZHANG Guan-hua, ZHANG Ping-cang, ZHANG Xiao-feng. Research Progress on Land Use/Cover Change and Its Driving Forces in Three Gorges Reservoir Area[J]. Soil and Water Conservation in China, 2017(5): 47-51. ) (in Chinese)
[9]
汪荣, 李阳兵, 郑骆珊, 等. 基于地貌差异的景观格局转型研究: 以三峡库区奉节县为例[J]. 生态学报, 2024, 44(1): 81-95.
(WANG Rong, LI Yang-bing, ZHENG Luo-shan, et al. Landscape Pattern Transformation Based on Differences in Topography: Taking Fengjie County in the Three Gorges Reservoir Area as an Example[J]. Acta Ecologica Sinica, 2024, 44(1): 81-95.) (in Chinese)
[10]
陈陆军, 易武, 黄晓虎, 等. 谭家河滑坡监测与精细化预警模型研究[J]. 水利水电快报, 2024, 45(2):34-43.
(CHEN Lu-jun, YI Wu, HUANG Xiao-hu, et al. Research on Monitoring and Refined Early Warning Model of Tanjiahe Landslide[J]. Express Water Resources & Hydropower Information, 2024, 45(2):34-43.) (in Chinese)
[11]
刘丹, 张祥梅, 余卓霖, 等. 三峡库岸带土壤净氮矿化的温度敏感性及驱动因子[J]. 土壤通报, 2023, 54(5):1080-1088.
(LIU Dan, ZHANG Xiang-mei, YU Zhuo-lin, et al. Temperature Sensitivity and Its Driving Factors of Soil Net Nitrogen Mineralization in the Bank Zone of the Three Gorges Reservoir[J]. Chinese Journal of Soil Science, 2023, 54(5): 1080-1088.) (in Chinese)
[12]
尹思危, 胡慧灵, 王跃峰, 等. 蓄水影响下三峡库区小流域径流变化情势分析[J]. 人民珠江, 2023, 44(9): 69-78.
(YIN Si-wei, HU Hui-ling, WANG Yue-feng, et al. Analysis of the Hydrological Regime in Small Basins within the Three Gorges Reservoir Area during the Impoundment Period[J]. Pearl River, 2023, 44(9): 69-78.) (in Chinese)
[13]
郑莉萍, 胡煜佳, 张森林, 等. 基于SWAT模型的璧南河流域径流模拟分析[J]. 重庆师范大学学报(自然科学版), 2023, 40: 31-47.
(ZHENG Li-ping, HU Yi-jia, ZHANG Sen-lin, et al. Simulation Analysis of Runoff in Binan River Basin Based on SWAT Model[J]. Journal of Chongqing Normal University(Natural Science), 2023, 40: 31-47.) (in Chinese)
[14]
王晓菊, 毛海涛, 黄庆豪, 等. 基于Copula函数的三峡库区万州段蓄水前后降雨量-径流量关系分析[J]. 水资源与水工程学报, 2021, 32(2): 23-30, 37.
(WANG Xiao-ju, MAO Hai-tao, HUANG Qing-hao, et al. Analysis of Rainfall-runoff Relationship before and after Impoundment of Three Gorges Reservoir Wan County Section Based on Copula Function[J]. Journal of Water Resources and Water Engineering, 2021, 32(2): 23-30, 37.) (in Chinese)
[15]
王珏, 张海荣, 孙振宇, 等. 三峡库区洪水演进模拟及传播规律分析[J]. 人民珠江, 2023, 44(3): 9-16, 39.
(WANG Jue, ZHANG Hai-rong, SUN Zhen-yu, et al. Flood Routing Simulation and Propagation Law Analysis in Three Gorges Reservoir Area[J]. Pearl River, 2023, 44(3): 9-16, 39.) (in Chinese)
[16]
肖扬帆, 周曼, 胡挺, 等. 基于MIKE11的三峡库区洪水演进模拟及洪水传播规律研究[J]. 水电能源科学, 2022, 40: 74-77,194.
(XIAO Yang-fan, ZHOU Man, HU Ting, et al. Research on Flood Routing Modeling and Flood Propagation Law for the Three Gorges Reservoir Based on MIKE11[J]. Water Resources and Power, 2022, 40: 74-77, 194.) (in Chinese)
[17]
丁相毅, 周怀东, 王宇晖, 等. 基于分布式水文模型的三峡库区污染负荷对气候变化的响应研究[J]. 环境科学学报, 2012, 32(8):1991-1998.
(DING Xiang-yi, ZHOU Huai-dong, WANG Yu-hui, et al. Impacts of Climate Change on Pollution Load in the Three Gorges Reservoir Based on a Distributed Hydrological Model[J]. Acta Scientiae Circumstantiae,2012, 32(8):1991-1998.) (in Chinese)
[18]
FAN Y, HUANG G, ZHANG Y, et al. Uncertainty Quantification for Multivariate Eco-Hydrological Risk in the Xiangxi River within the Three Gorges Reservoir Area in China[J]. Engineering, 2018, 4(5): 617-626.
[19]
余楚, 孙自永, 周爱国. 三峡库区张家冲小流域降雨-径流模拟[J]. 水土保持通报, 2012, 32(3):178-181.
(YU Chu, Rainfall-Runoff Simulation for Zhangjiachong Small Watershed in the Three Gorges Reservoir[J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 178-181.) (in Chinese)
[20]
王世岩, 杜飞, 姜志, 等. 母亲河复苏行动河湖遥感监测分析[J]. 中国水利, 2024(13):11-16.
(WANG Shi-yan, DU Fei, JIANG Zhi, et al. Analysis of River and Lake Remote Sensing Monitoring for the Mother River Recovery Action[J]. China Water Resources, 2024(13): 11-16. ) (in Chinese)
[21]
何国金, 郑铠沅, 杨瑞清, 等. 遥感大数据赋能青藏高原陆表水体空间分布信息认知[J]. 中国水利, 2024(11):56-66.
(HE Guo-jin, ZHENG Kai-yuan, YANG Rui-qing, et al. Empowering Cognition of Surface Water Spatial Distribution Information in the Tibetan Plateau with Remote Sensing Big Data[J]. China Water Resources, 2024(11): 56-66. ) (in Chinese)
[22]
BJERKLIE D M, LAWRENCE DINGMAN S, VOROSMARTY C J, et al. Evaluating the Potential for Measuring River Discharge from Space[J]. Journal of Hydrology, 2003, 278(1/2/3/4): 17-38.
[23]
LOU H, WANG P, YANG S, et al. Combining and Comparing an Unmanned Aerial Vehicle and Multiple Remote Sensing Satellites to Calculate Long-term River Discharge in an Ungauged Water Source Region on the Tibetan Plateau[J]. Remote Sensing, 2020, 12(13): 2155.
[24]
张军, 娄和震, 杨胜天, 等. 河道流量对疏勒河中下游河岸带植被变化的影响评价[J]. 干旱区资源与环境, 2022,36:123-129.
(ZHANG Jun, LOU He-zhen, YANG Sheng-tian, et al. Impact of River Flow on Vegetation Change in the Riparian Zone of the Middle and Lower Reaches of Shule River[J]. Journal of Arid Land Resources and Environment, 2022, 36: 123-129.) (in Chinese)
[25]
WUFU A, YANG S, CHEN Y, et al. Estimation of Long-term River Discharge and Its Changes in Ungauged Watersheds in Pamir Plateau[J]. Remote Sensing, 2021, 13(20): 4043.
[26]
YANG S, WANG P, LOU H, et al. Estimating River Discharges in Ungauged Catchments Using the Slope-Area Method and Unmanned Aerial Vehicle[J]. Water, 2019, 11(11): 2361.
[27]
YANG S, ZHOU B, LOU H, et al. Remote Sensing Hydrological Indication: Responses of Hydrological Processes to Vegetation Cover Change in Mid-latitude Mountainous Regions[J]. Science of the Total Environment, 2022, 851: 158170.
[28]
LOU H, LI H, YANG S, et al. River Discharge Recovery Lag in the Small and Medium-sized Rivers Occurred in Response to Climate Change and Human Activities[J]. Journal of Hydrology, 2023, 620: 129453.
[29]
张纯斌, 杨胜天, 赵长森, 等. 小型消费级无人机地形数据精度验证[J]. 遥感学报, 2018, 22(1): 185-195.
(ZHANG Chun-bin, YANG Sheng-tian, ZHAO Chang-sen, et al. Topographic Data Accuracy Verification of Small Consumer UAV[J]. Journal of Remote Sensing, 2018, 22(1): 185-195.) (in Chinese)
[30]
YANG S, PAN Z, LOU H, et al. Reconstruction of the Water Cycle Process Reveals the 600-year Evolution of the Human-water Relationship in Tunpu, China[J]. Journal of Hydrology, 2023, 617: 128927.
[31]
LOU H, YANG S, SHI X, et al. Whether the Enhanced Terrestrial Vegetation Carbon Sink Affect the Water Resources in the Middle-low Latitude Karst Areas of China?[J]. Journal of Hydrology, 2023, 620: 129510.
[32]
PAN Z, YANG S, REN X, et al. GEE Can Prominently Reduce Uncertainties from Input Data and Parameters of the Remote Sensing-driven Distributed Hydrological Model[J]. Science of the Total Environment, 2023,870:161852.
[33]
曾慧琪, 滕顺林, 邵蒙, 等. 近60年三峡库区极端降水变化及其与环流指数遥相关分析[J]. 人民珠江, 2023, 44(5): 1-9.
(ZENG Hui-qi, TENG Shun-lin, SHAO Meng, et al. Spatiotemporal Changes of Extreme Precipitation and Its Teleconnection Analysis with Climate Circulation Indices in Three Gorges Reservoir Area in Recent 60 Years[J]. Pearl River, 2023, 44(5): 1-9.) (in Chinese)
[34]
张勇, 周媛, 姚赫, 等. 近10年三峡库区极端降水时空特征分析[J]. 中国防汛抗旱, 2022, 32: 9-13.
(ZHANG Yong, ZHOU Yuan, YAO He, et al. Analysis of Spatial and Temporal Characteristics of Extreme Precipitation in the Three Gorges Reservoir Area in Recent 10 year[J]. China Flood & Drought Management, 2022, 32: 9-13.) (in Chinese)
[35]
赵子皓, 江晓东, 杨沈斌. 三峡蓄水对局地气候变化的影响[J]. raybet体育在线 院报, 2022, 39(6): 40-49.
摘要
大型水体会对局部地区(局地)气候条件造成影响,三峡工程是当今世界规模最大的水利水电枢纽工程,为了分析三峡蓄水对当地气候变化的影响,以三峡库区10个站点为研究对象,利用气候倾向率、CVM检验等方法,系统分析了三峡库区66 a来气候变化特征以及蓄水对局地气候变化的影响。结果表明,三峡蓄水后局地温度下降,影响大坝附近299.83 km<sup>2</sup>的地区,影响距离最远距大坝12.65 km,大坝最近的秭归站温度在1997年发生突变,蓄水后20 a秭归站年平均温度较蓄水前20 a下降1.15 ℃;蓄水造成局地降水量增加,影响大坝附近2 914.88 km<sup>2</sup>的地区,影响距离最远距大坝109.15 km,大坝最近的秭归站降水在1997年突变,蓄水后20 a秭归站平均降水量较蓄水前上升245.90 mm;蓄水造成局地相对湿度增加,秭归、兴山站相对湿度分别在1997年、2003年突变,蓄水后20 a秭归站相对湿度较蓄水前20 a上升5.29%;蓄水造成局地日照时数下降,影响大坝附近2 045.66 km<sup>2</sup>的地区,影响距离距大坝最远41.06 km,距大坝最近的秭归站日照时数在2002年突变,蓄水后20 a秭归站日照时数较蓄水前20 a下降33.87 h。蓄水对气象要素影响的范围较小,对各要素共同造成影响的范围仅75.27 km<sup>2</sup>,各要素全部在蓄水期间发生突变的仅秭归一站。
(ZHAO Zi-hao, JIANG Xiao-dong, YANG Shen-bin. Impact of Water Storage in Three Gorges Reservoir on Local Climate Change[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(6): 40-49.) (in Chinese)
Due to special underlying surface properties, large water bodies have impacts on local water thermal cycle and climate. The Three Gorges Project is the world&apos;s largest water conservancy project. In the present research, we analyzed systematically the characteristics of climate change in the Three Gorges Reservoir over the past 66 years and the impacts of water storage on local climate by means of climate tendency rate and CVM test. Results demonstrated that the local temperature of the Three Gorges Project has declined after impoundment, affecting an area of 299.83 km<sup>2</sup> near the dam, reaching 12.65 km away from the dam. The temperature of Zigui station, which is the closest to the dam, changed abruptly in 1997. The average annual temperature of Zigui two decades after the impoundment was 1.15 ℃ lower than that before the impoundment. Local precipitation has increased, affecting an area of 2 914.88 km<sup>2</sup>, reaching 109.15 km away from the dam. The precipitation of Zigui station also changed abruptly in 1997, and the average precipitation of Zigui two decades after the impoundment increased by 245.90 mm compared with that before the impoundment. Water storage also led to the rise of local relative humidity. Zigui and Xingshan witnessed abrupt changes in relative humidity in 1997 and 2003, respectively, of which the former rose by 5.29% two deades after the impoundment. The number of sunshine hours reduced, affecting the nearby area of 2 045.66 km<sup>2</sup>, extending 41.06 km away from the dam. The sunshine hours of Zigui changed abruptly in 2002, reducing by 33.87 hours compared with that two decades before the impoundment. In conclusion, water storage in the Three Gorges Reservoir has had a small scope of influence on meteorological elements, affecting an area of only 75.27 km<sup>2</sup> on all the elements; only Zigui station experienced abrupt changes in all the elements during water storage.
[36]
鄂施璇, 李琴, 张露洋. 三峡库区1980—2021年土地利用碳排放格局及碳补偿[J]. 水土保持通报, 2023, 43(1): 300-306.
(E Shi-xuan, LI Qin, ZHANG Lu-yang. Land Use Carbon Emission Pattern and Carbon Compensation in Three Gorges Reservoir Area during 1980-2021[J]. Bulletin of Soil and Water Conservation, 2023, 43(1): 300-306.) (in Chinese)
[37]
许秋阳, 吴乐知. 三峡库区近十年土地利用变化特征研究[J]. 湖北师范大学学报(自然科学版), 2023, 43(2):60-67.
(XU Qiu-yang, WU Le-zhi. Research on the Characteristics of Land Use Change in the Three Gorges Reservoir Area[J]. Journal of Hubei Normal University (Natural Science), 2023, 43(2): 60-67.) (in Chinese)
[38]
万其林, 邵景安. 2000—2020年三峡库区重庆段土地利用及碳储量估算[J]. 重庆师范大学学报(自然科学版), 2023, 40(6): 52-64.
(WAN Qi-lin, SHAO Jing-an. Land Use and Carbon Storage Estimation in the Chongqing Section of the Three Gorges Reservoir Area from 2000 to 2020[J]. Journal of Chongqing Normal University 2023, 40(6): 52-64.) (in Chinese)

基金

三峡后续工作项目(JZ110161A0012023)
国家自然科学基金项目(U1812401)
第三次新疆综合科学考察资助项目(SQ2021xjkk02400)

责任编辑: 刘运飞
PDF(10244 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map