地下水封洞库施工期洞室围岩力学参数智能反演

曹洋兵, 陈可辛, 黄月, 李尧, 张遂, 黄真萍

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 149-158.

PDF(8563 KB)
PDF(8563 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 149-158. DOI: 10.11988/ckyyb.20231376
岩土工程

地下水封洞库施工期洞室围岩力学参数智能反演

作者信息 +

Intelligent Inversion of Mechanical Parameters of Surrounding Rock of Underground Water-Sealed Storage Cavern During Construction

Author information +
文章历史 +

摘要

合理准确确定围岩力学参数对于地下水封洞库施工期围岩稳定性分析与支护结构设计具有重要意义。基于地下水封洞库工程地质特征,针对等效连续介质围岩模型,提出施工期洞室围岩力学参数智能反演方法。该方法首先通过室内试验与数值试验确定洞库岩体本构模型,再通过Hoek-Brown强度准则等多种方法估算本构模型中力学参数,分析各参数对围岩变形松弛的敏感性并设计待反演参数的正交试验方案,最后通过数值模拟获得样本并结合进化神经网络模型构建围岩力学参数智能反演模型。综合估算不同岩体基本质量级别下围岩力学参数初始取值范围,可克服智能算法大范围寻优而导致反演结果偏离较大的情况;开展力学参数对围岩变形松弛的敏感性分析,可减少反演参数的数量。以山东某地下水封洞库工程作为典型案例进行反演方法应用检验,获得的围岩拱顶沉降、洞周最大位移、内部变形以及平均松弛深度等参量的相对误差均不超过10%,满足工程应用精度,表明提出的智能反演方法具有较高可行性与可靠性,可为类似工程提供参考。

Abstract

Reasonably and accurately determining the mechanical parameters of surrounding rock is crucial for the stability analysis of surrounding rock and the design of supporting structures during the construction of underground water-sealed storage caverns. Based on the engineering geological characteristics of underground water-sealed storage caverns, an intelligent inversion method for the mechanical parameters of surrounding rock during construction is proposed for the equivalent continuous medium model. First, the constitutive model of the cavern rock mass is determined via laboratory and numerical tests. Then, the mechanical parameters of the constitutive model are estimated using the Hoek-Brown strength criterion and other methods, and the sensitivity of each parameter to the deformation and relaxation of the surrounding rock is analyzed. Based on these analyses, an orthogonal test scheme for the parameters to be inverted is designed. Finally, an intelligent inversion model for the mechanical parameters of the surrounding rock is constructed using samples obtained from numerical simulations and an evolutionary neural network model. Comprehensively estimating the initial value ranges of the mechanical parameters of the surrounding rock for different classes of rock mass basic quality can avoid large deviations in inversion results caused by the wide optimization range of intelligent algorithms. Sensitivity analysis of the mechanical parameters to the deformation and relaxation of the surrounding rock can reduce the number of inversion parameters. The proposed intelligent inversion method is applied to a typical underground water-sealed storage cavern project in Shandong Province. Results show that the relative errors of the settlement of the peripheral rock vault, the maximum displacement of the cavern circumference, the internal deformation, and the average depth of relaxation are all less than 10%, meeting the precision requirements of engineering applications. Therefore, the proposed intelligent inversion method exhibits high feasibility and reliability through practical application and can serve as a reference for similar projects.

关键词

地下水封洞库 / 围岩稳定性 / 等效连续介质围岩模型 / 力学参数 / Hoek-Brown强度准则 / 智能反演 / 岩体本构模型

Key words

underground water-sealed storage cavern / stability of surrounding rock / equivalent continuous medium model for surrounding rock / mechanical parameters / Hoek-Brown strength criterion / intelligent inversion / constitutive model for rock mass

引用本文

导出引用
曹洋兵, 陈可辛, 黄月, . 地下水封洞库施工期洞室围岩力学参数智能反演[J]. raybet体育在线 院报. 2025, 42(4): 149-158 https://doi.org/10.11988/ckyyb.20231376
CAO Yang-bing, CHEN Ke-xin, HUANG Yue, et al. Intelligent Inversion of Mechanical Parameters of Surrounding Rock of Underground Water-Sealed Storage Cavern During Construction[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 149-158 https://doi.org/10.11988/ckyyb.20231376
中图分类号: P642.2   

参考文献

[1]
曹洋兵. 大型地下水封储气库围岩变形破坏机制与锚喷支护研究[D]. 武汉: 中国地质大学, 2014.
CAO Yang-bing. Study on Deformation and Failure Mechanism of Surrounding Rock and Bolting and Shotcreting Support of Large Underground Water-sealed Gas Storage[D]. Wuhan: China University of Geosciences, 2014.) (in Chinese)
[2]
SAKURAI S, TAKEUCHI K. Back Analysis of Measured Displacements of Tunnels[J]. Rock Mechanics and Rock Engineering, 1983, 16(3): 173-180.
[3]
冯夏庭, 张治强, 杨成祥, 等. 位移反分析的进化神经网络方法研究[J]. 岩石力学与工程学报, 1999, 18(5):529-533.
(FENG Xia-ting, ZHANG Zhi-qiang, YANG Cheng-xiang, et al. Study on Genetic Neural Network Method of Displacement Back Analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 529-533.) (in Chinese)
[4]
伍国军, 陈卫忠, 贾善坡. 大型地下洞室围岩体蠕变参数位移反分析研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4043-4049.
(WU Guo-jun, CHEN Wei-zhong, JIA Shan-po. Back Analysis of Creep Parameter Displacement of Surrounding Rock Mass of Large Underground Cavern[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Supp. 2): 4043-4049.) (in Chinese)
[5]
张飞, 徐光黎, 魏志云, 等. 考虑松动圈的地下洞室群施工期岩体参数反演[J]. raybet体育在线 院报, 2013, 30(7): 75-80, 85.
摘要
结合大岗山水电站地下厂房洞室群施工期分层开挖特点,提出考虑松动圈参数弱化效应的反演基本模型。引入GA-BP算法,基于正交试验设计与FLAC<sup>3D</sup>差分程序获得神经网络学习样本及测试样本,建立起围岩力学参数与位移之间的高度非线性映射关系。根据现场实测位移和网络映射位移,建立目标函数,采用遗传算法在岩体参数经验取值范围内,搜索使目标函数取得最优解的参数组合,以获取反演的最优岩体参数。最后利用获取的岩体参数进行正演分析并进行位移的后验差法检验,结论表明了该方法的适用性,其可用于反馈并指导地下工程设计与施工。
(ZHANG Fei, XU Guang-li, WEI Zhi-yun, et al. Intelligent back Analysis of Rockmass Parameters of Underground Caverns in Consideration of Loose Zone during Construction[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(7): 75-80, 85.) (in Chinese)
A basic back analysis model is proposed in consideration of the weakening effect of loose zone parameters for Dagangshan underground powerhouse caverns excavated in layers. The learning and testing samples of neural network were acquired by introducing GA BP algorithm based on orthogonal experimental design and FLAC 3D differential procedures. Hence a highly nonlinear mapping relation between the rock’s mechanical parameters and the displacements was established. According to field measured displacement and network mapping displacement, the objective function was obtained. By using genetic algorithm, the optimum rockmass parameters were obtained by searching parameter combinations which can make the network mapping displacement and the field measured displacement satisfy the optimal solution of the objective function within the range of empirical values. Finally, forward analysis on the obtained rockmass parameters and backward error detection on the displacements were carried out. Results show that the method is suitable for the design and construction of underground works.
[6]
田泽润, 李守巨, 于申. 白山抽水蓄能泵站地下厂房的岩体力学参数反演[J]. 岩土力学, 2014, 35(增刊2): 508-513.
(TIAN Ze-run, LI Shou-ju, YU Shen. Inversion of Mechanical Parameters of Rock Mass in Underground Powerhouse of Baishan Pumped Storage Pumping Station[J]. Rock and Soil Mechanics, 2014, 35(Supp. 2): 508-513.) (in Chinese)
[7]
王开禾, 罗先启, 沈辉, 等. 围岩力学参数反演的GSA-BP神经网络模型及应用[J]. 岩土力学, 2016, 37(增刊1): 631-638.
(WANG Kai-he, LUO Xian-qi, SHEN Hui, et al. GSA-BP Neural Network Model for Inversion of Mechanical Parameters of Surrounding Rock and Its Application[J]. Rock and Soil Mechanics, 2016, 37(Supp. 1): 631-638.) (in Chinese)
[8]
阮永芬, 高春钦, 刘克文, 等. 基于粒子群算法优化小波支持向量机的岩土力学参数反演[J]. 岩土力学, 2019, 40(9): 3662-3669.
(RUAN Yong-fen, GAO Chun-qin, LIU Ke-wen, et al. Inversion of Rock and Soil Mechanics Parameters Based on Particle Swarm Optimization Wavelet Support Vector Machine[J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669.) (in Chinese)
[9]
吴佳宁, 邢同振, 宋义敏. 基于DSCM-FEMU的岩石力学参数反演研究[J]. 地下空间与工程学报, 2021, 17(2): 350-355, 364.
摘要
将数字散斑相关方法(DSCM)与有限元模型修正方法(FEMU)相结合,建立了岩石力学参数反演流程。首先,通过数字散斑相关方法,获取实验中岩石试件受载条件下的应变场;其次,利用有限元模拟方法,获取数值模型中的应力场;最后,构建最小二乘目标函数,并且通过不断更新有限元模型中给定的力学参数进行优化计算。当目标函数收敛时,得到与实验结果最匹配的力学参数。研究结果表明:(1)数字散斑相关方法与有限元模型修正法相结合,可以实现材料的力学参数反演;(2)得到以实验应变场、有限元应力场、材料弹性模量和泊松比组成的参数优化目标函数;(3)以三点弯曲实验为例,反演得到花岗岩的弹性模量和泊松比。
(WU Jia-ning, XING Tong-zhen, SONG Yi-min. Rock Mechanical Parameter Inversion Based on DSCM-FEMU[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 350-355, 364.) (in Chinese)
The digital speckle correlation method (DSCM) and the finite element model updating method (FEMU) are combined to establish the rock mechanical parameters inversion process. Firstly, the strain field of the rock specimen in the experiment was obtained by digital speckle correlation method. Secondly, the stress field in the numerical model was obtained by the finite element simulation method. Finally, the least squares objective function was constructed, and optimization calculations were performed by continuously updating the mechanical parameters in the finite element model. When the objective function converges, the mechanical parameters that best match the experimental results were obtained. The results show that: (1) Combining digital speckle correlation method with the finite element model updating method, mechanical parameter inversion of materials can be realized. (2) The objective function of parameter optimization composed of experimental strain field, the finite element stress field, material elastic modulus and Poisson&apos;s ratio is obtained. (3) Taking the three-point bending experiment as an example, the elastic modulus and Poisson&apos;s ratio of granite are obtained.
[10]
韩钢, 黄书岭, 丁秀丽, 等. 香炉山隧洞5#支洞应急抢险段围岩参数反演及稳定性分析[J]. raybet体育在线 院报, 2022, 39(12): 56-61, 67.
摘要
在建的滇中引水工程香炉山隧洞5#支洞穿越活动断裂带,地质条件极为复杂,施工过程中发生过严重的涌水突泥灾害,围岩稳定问题极为突出,严重制约施工进度和工程安全。为深入系统地研究5#支洞应急抢险洞段合理的围岩力学参数及隧洞稳定性情况,充分利用现场监测及物探资料,采用基于神经网络和遗传算法的位移反演方法确定了应急抢险洞段围岩的力学参数;并在此基础上,模拟施工开挖支护全过程,进行了围岩稳定性分析。结果表明:在当前开挖支护条件下,5#支洞应急抢险洞段整体处于稳定状态,除桩号K0+501—513洞段右边墙围岩变形量较大外,其余部位围岩变形量整体&lt;15 cm;塑性区深度在2~5 m范围内;支护结构受力整体处于正常水平。相关研究结果对于5#支洞后续洞段或相近条件隧洞安全快速施工具有指导意义。
(HAN Gang, HUANG Shu-ling, DING Xiu-li, et al. Inversion Analysis of Rock Mass Mechanical Parameters and Stability Analysis of Emergency Rescue Section in Adit 5# of Xianglushan Tunnel[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12): 56-61, 67.) (in Chinese)
The 5# adit of Xianglushan tunnel under construction of Central Yunnan Water Diversion Project features complex geological conditions as it crosses active fault zones. Severe water-mud bursting disasters and prominent stability problems of surrounding rock hinder the construction progress and project safety. According to field monitoring and geophysical exploration data, we determined the mechanical parameters of surrounding rock at emergency rescue section by using inversion analysis based on neural network and genetic algorithm; on this basis, we simulated the whole process of construction, excavation, and support, and analysed the surrounding rock stability. Results manifested that the surrounding rock mass of emergency rescue tunnel section of adit 5# was in an overall stable state. Except that the deformation of surrounding rock on the right side of the tunnel section K0+501-513 was relatively large, the deformation of other parts was less than 15 cm in general; the depth of plastic zones was within the range of 2-5 m; and the stress of support structures was at a normal level. The research findings would guide the safe and rapid construction of subsequent tunnel sections of 5# adit or tunnels with similar geological conditions.
[11]
王述红, 董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析[J]. 岩土工程学报, 2023, 45(5): 1024-1035.
(WANG Shu-hong, DONG Fu-rui. Stability Analysis of Surrounding Rock of Mountain Tunnels Based on Deformation Prediction and Parameter Inversion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1024-1035.) (in Chinese)
[12]
LI H, CHEN W, TAN X, et al. Back Analysis of Geomechanical Parameters for Rock Mass under Complex Geological Conditions Using a Novel Algorithm[J]. Tunnelling and Underground Space Technology, 2023,136:105099.
[13]
CHANG X, WANG H, ZHANG Y. Back Analysis of Rock Mass Parameters in Tunnel Engineering Using Machine Learning Techniques[J]. Computers and Geotechnics, 2023, 163: 105738.
[14]
WALTON G, SINHA S. Challenges Associated with Numerical back Analysis in Rock Mechanics[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 2058-2071.
[15]
张强勇, 向文, 杨佳. 大岗山地下厂房洞室群围岩力学参数的动态反演与开挖稳定性分析研究[J]. 土木工程学报, 2015, 48(5): 90-97.
(ZHANG Qiang-yong, XIANG Wen, YANG Jia. Dynamic Inversion of Mechanical Parameters for Surrounding Rock Mass and Excavation Stability Analysis for Dagangshan Underground Powerhouse Caverns[J]. China Civil Engineering Journal, 2015, 48(5): 90-97.) (in Chinese)
[16]
赵江涛, 苏洁, 王剑晨, 等. 多参数遗传算法在地铁穿越工程中的应用[J]. 土木工程学报, 2020, 53(增刊1): 205-212, 219
(ZHAO Jiang-tao, SU Jie, WANG Jian-chen, et al. Application of Multi-parameter Genetic Algorithm in Subway Crossing Project[J]. China Civil Engineering Journal, 2020, 53(Supp. 1): 205-212, 219.) (in Chinese)
[17]
吴忠广, 吴顺川. 深埋硬岩隧道围岩参数概率反演方法[J]. 工程科学学报, 2019, 41(1): 78-87.
(WU Zhong-guang, WU Shun-chuan. Probabilistic back Analysis Method for Determining Surrounding Rock Parameters of Deep Hard Rock Tunnel[J]. Chinese Journal of Engineering, 2019, 41(1): 78-87.) (in Chinese)
[18]
XU J, YANG C. Probabilistic back Analysis Based on Adam, Bayesian and Multi-output Gaussian Process for Deep Soft-rock Tunnel[J]. Rock Mechanics and Rock Engineering, 2023, 56(9): 6843-6853.
[19]
陈静, 江权, 冯夏庭, 等. 基于位移增量的高地应力下硐室群围岩蠕变参数的智能反分析[J]. 煤炭学报, 2019, 44(5): 1446-1455.
(CHEN Jing, JIANG Quan, FENG Xia-ting, et al. Intelligent back Analysis of Rock Mass Creep Parameters for Large Underground Caverns under High In-situ Stress Based on Incremental Displacement[J]. Journal of China Coal Society, 2019, 44(5): 1446-1455.) (in Chinese)
[20]
杨艳霜, 周辉, 梅松华, 等. 高地应力硬脆性围岩开挖损伤区时效性扩展案例分析: 特征与机制[J]. 岩土力学, 2020, 41(4): 1357-1365.
(YANG Yan-shuang, ZHOU Hui, MEI Song-hua, et al. A Case Study of the Excavation Damage Zone Expansion Time Effect in Hard Brittle Country Rock under High Geostress: Characteristics and Mechanism[J]. Rock and Soil Mechanics, 2020, 41(4): 1357-1365.) (in Chinese)
[21]
ZHANG Y, SU G, LIU B, et al. A Novel Displacement back Analysis Method Considering the Displacement Loss for Underground Rock Mass Engineering[J]. Tunnelling and Underground Space Technology, 2020, 95: 103141.
[22]
ZHAO Y, FENG S J. Back Analysis of Surrounding Rock Parameters of Tunnel Considering Displacement Loss and Space Effect[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5675-5692.
[23]
LI H, CHEN W, TAN X. Displacement-based Back Analysis of Mitigating the Effects of Displacement Loss in Underground Engineering[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(10): 2626-2638.
[24]
HOEK E, CARRANZA-TORRES C, CORKUM B. 2002 Hoek-Brown Failure Criterion - 2002 Edition[C]//Proceedings of the North American Rock Mechanics Symposium. Toronto, July 7-10, 2002: 267-273.
[25]
GB/T 50218—2014, 工程岩体分级标准[S]. 北京: 中国计划出版社, 2015.
(GB/T 50218—2014, Standard for Engineering Classification of Rockmass[S]. Beijing: China Planning Press, 2015.) (in Chinese)
[26]
BARTON N. Some New Q-value Correlations to Assist in Site Characterisation and Tunnel Design[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 185-216.
[27]
HOEK E. Support of Underground Excavations in Hard Rock[M]. London: Taylor & Francis, 1995.
[28]
CAI M, KAISER P K, TASAKA Y, et al. Determination of Residual Strength Parameters of Jointed Rock Masses Using the GSI System[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(2): 247-265.
[29]
章光, 朱维申. 参数敏感性分析与试验方案优化[J]. 岩土力学, 1993, 14(1): 51-58.
(ZHANG Guang, ZHU Wei-shen. Parameter Sensitivity Analysis and Optimizing for Test Programs[J]. Rock and Soil Mechanics, 1993, 14(1): 51-58.) (in Chinese)
[30]
曹洋兵, 晏鄂川, 谢良甫. 考虑环境变量作用的滑坡变形动态灰色-进化神经网络预测研究[J]. 岩土力学, 2012, 33(3): 848-852.
(CAO Yang-bing, YAN E-chuan, XIE Liang-fu. Study of Landslide Deformation Prediction Based on Gray Model-evolutionary Neural Network Model Considering Function of Environmental Variables[J]. Rock and Soil Mechanics, 2012, 33(3): 848-852.) (in Chinese)
[31]
曹洋兵, 江志豪, 黄月, 等. 地下水封洞库施工期洞室围岩变形松弛典型特征与规律[J]. 福州大学学报(自然科学版), 2024, 52(2): 245-252.
(CAO Yang-bing, JIANG Zhi-hao, HUANG Yue, et al. Deformation-relaxation Typical Characteristics and Laws of Surrounding Rock of Underground Water-sealed Storage Cavern during Construction Stage[J]. Journal of Fuzhou University (Natural Science Edition), 2024, 52(2): 245-252.) (in Chinese)

基金

福建省自然科学基金项目(2023J01424)
贵州省高层次创新型人才项目(黔科合平台人才[2020]6019-2号)

责任编辑: 刘运飞
PDF(8563 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map