Cu2+在HPMC改性膨润土中的吸附和扩散行为

王宝, 胡业昊, 朱佳佳, 张迪, 周浩然

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 127-126.

PDF(5575 KB)
PDF(5575 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 127-126. DOI: 10.11988/ckyyb.20240104
岩土工程

Cu2+在HPMC改性膨润土中的吸附和扩散行为

作者信息 +

Diffusion and Adsorption of Copper Ion in HPMC-modified Bentonite

Author information +
文章历史 +

摘要

开展穿透扩散试验(Through-Diffusion Test),研究重金属Cu2+在羟丙基甲基纤维素(HPMC)改性膨润土中的吸附和扩散行为,并与未改性膨润土进行比较。同时,使用污染物运移模拟软件Pollute V7.0定量评估HPMC改性对膨润土截污性能的影响。研究结果表明,当HPMC的添加量为2%和5%时,Cu2+在膨润土上的吸附量分别减小了40%和46%,而扩散速度分别降低了7%和34%。Pollute V7.0的模拟计算结果显示,添加2%和5%的HPMC,可将膨润土对Cu2+的截污性能分别提高1.32倍和2.58倍。研究结果可为HPMC改性膨润土截污性能评估提供基础参数。

Abstract

A series of through-diffusion tests were carried out to explore the diffusion and adsorption behaviors of Cu2+ in bentonites modified with hydroxypropyl methylcellulose (HPMC). The test results were compared with those of untreated bentonite. Pollute V7.0 was employed to quantitatively evaluate the impact of HPMC on the performance of bentonite in intercepting Cu2+. The diffusion test results indicated that when the HPMC content reached 2% and 5%, the capacity of bentonite adsorbing Cu2+ decreased by 40% and 46%, respectively, while the diffusion coefficient of Cu2+ dropped by 7% and 34%, correspondingly. The results from Pollute V7.0 demonstrated that adding 2% and 5% HPMC to sodium bentonite enhanced the performance of bentonite for adsorbing Cu2+ by factors of 1.34 and 2.03, respectively. Overall, the findings of this study offer valuable information for assessing the performance of HPMC-modified bentonite.

关键词

土工复合膨润土衬垫 / 膨润土 / 羟丙基甲基纤维素 / 扩散 / 吸附

Key words

geosynthetic clay liners / bentonite / hydroxypropyl methylcellulose / diffusion / adsorption

引用本文

导出引用
王宝, 胡业昊, 朱佳佳, . Cu2+在HPMC改性膨润土中的吸附和扩散行为[J]. raybet体育在线 院报. 2025, 42(4): 127-126 https://doi.org/10.11988/ckyyb.20240104
WANG Bao, HU Ye-hao, ZHU Jia-jia, et al. Diffusion and Adsorption of Copper Ion in HPMC-modified Bentonite[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 127-126 https://doi.org/10.11988/ckyyb.20240104
中图分类号: TU57   

参考文献

[1]
CHEN G, YE Y, YAO N, et al. A Critical Review of Prevention, Treatment, Reuse, and Resource Recovery from Acid Mine Drainage[J]. Journal of Cleaner Production, 2021, 329: 129666.
[2]
谢世平, 何顺辉, 张健. GCL常见问题分析[J]. raybet体育在线 院报, 2017, 34(2): 8-12
摘要
钠基膨润土防水毯(以下简称GCL)作为传统压实黏土层的替代者,具有优异的防渗隔离性能,被广泛应用于水利、环保、交通等领域的防水防渗工程。GCL在国内应用已有20多年,但人们对其认识还存在一定的误区,阻碍了GCL的进一步推广应用。为消除人们对GCL的错误认识,加深对GCL的理解,基于多年的GCL生产和研究经验,阐述了编织布平整度、膨润土特性、GCL认知、测试方法等方面存在的问题。研究结果表明:不平整载布不宜用于GCL的生产;以GCL为主防渗层的工程,应该使用粉末型GCL;GCL作为环保工程的次防渗层,是整个防渗系统的重要组成部分;GCL检测标准应增加平整度或漏点检测,并应能反映GCL前期渗透系数。
(XIE Shi-ping, HE Shun-hui, ZHANG Jian. Common Problems of Geosynthetic Clay Liner[J]. Journal of Changjiang River Scientific Research Institute, 2017, 34(2): 8-12.) (in Chinese)
[3]
周正兵, 王钊, 王俊奇. GCL: 一种新型复合土工材料的特性及应用综述[J]. raybet体育在线 院报, 2002, 19(1): 35-38.
摘要
对GCL基本产品的结构类型、水力特性、强度特性、隔气性等作了概括性的介绍,通过图解说明了GCL在环境工程和水利工程中的应用情况,最后指出了其在工程应用中应注意的几点问题。
(ZHOU Zheng-bing, WANG Zhao, WANG Jun-qi. An Overview about Properties and Application of a New Geocomposite - GCL[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(1): 35-38.) (in Chinese)
The paper sums up several basic types of GCL(geosynthetic clay liner) products and their related properties, including hydraulic characteristics, gas impermeability and their shear strengths. Also it illustrates their application in environmental and hydraulic engineering. Then a few noticeable problems are given during practical applications.
[4]
邢晓彬, 原福庆. 尾矿库防渗系统设计[J]. 有色矿冶, 2020, 36(2):49-53.
(XING Xiao-bin, YUAN Fu-qing. Design of Seepage Control System for Tailings Pond[J]. Non-ferrous Mining and Metallurgy, 2020, 36(2): 49-53.) (in Chinese)
[5]
景宗阳. 尾矿库防渗系统施工技术[J]. 建筑施工, 2022, 44(7): 1717-1720.
(JING Zong-yang. Construction Technology for Seepage Prevention System of Tailings Pond[J]. Building Construction, 2022, 44(7): 1717-1720.) (in Chinese)
[6]
WANG B, DONG X, CHEN B, et al. Hydraulic Conductivity of Geosynthetic Clay Liners Permeated with Acid Mine Drainage[J]. Mine Water and the Environment, 2019, 38(3): 658-666.
[7]
周正兵, 王钊, 王俊奇. 离子交换对GCL防渗能力的影响[J]. raybet体育在线 院报, 2002, 19(3): 37-40.
摘要
GCL在垃圾填埋场中的用量占其总用量的90%,而填埋场中的沥滤液含有大量高于1价的阳离子(如Ca2+,Mg2+等),它们与GCL中的阳离子发生离子交换,影响GCL的防渗性能。经研究分析GCL膨润土中的阳离子与沥滤液中的阳离子发生离子交换的条件、机理、过程以及它们对GCL防渗能力的影响,提出了有针对性的解决办法。
(ZHOU Zheng-bing, WANG Zhao, WANG Jun-qi. Influence of Ion Exchange on Hydraulic Conductivity of GCL[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(3): 37-40.) (in Chinese)
The dosage of geosynthetic clay liner (GCL) is very great in landfills (about 90 percent of its sum dosage).The leachate in the landfills involves a lot of multi-valence cations,such as Ca2+, Mg2+,etc.,Ion exchange between these cations and cations in GCL will influence GTCL'S hydraulic conductivity.This paper presents the condition,mechanism and process of ion exchange between the ions of bentonite in the GCL and ions in leachate and their effects on GCL's impermeability,and some resolution methods are proposed.
[8]
周浩然. 羟丙基甲基纤维素改性土工合成黏土衬垫防污性能研究[D]. 西安: 西安建筑科技大学, 2023.
(ZHOU Hao-ran. Study on Antifouling Performance of Geosynthetic Clay Liners Modified by Hydroxypropyl Methyl Cellulose[D]. Xi’an: Xi’an University of Architecture and Technology, 2023.) (in Chinese)
[9]
FU X L, ZHUANG H, REDDY K R, et al. Novel Composite Polymer-amended Bentonite for Environmental Containment: Hydraulic Conductivity, Chemical Compatibility, Enhanced Rheology and Polymer Stability[J]. Construction and Building Materials, 2023, 378: 131200.
[10]
TONG S, SAMPLE-LORD K M. Coupled Solute Transport through a Polymer-enhanced Bentonite[J]. Soils and Foundations, 2022, 62(6): 101235.
[11]
王宝, 王泽峰, 窦桐桐, 等. 氨氮在土工合成黏土衬垫中的扩散行为研究[J]. 岩土工程学报, 2021, 43(1): 140-146.
(WANG Bao, WANG Ze-feng, DOU Tong-tong, et al. Diffusion of Ammonium through a Geosynthetic Clay Liner[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 140-146.) (in Chinese)
[12]
BASALLOTE M D, CÁNOVAS C R, OLÍAS M, et al. Mineralogically-induced Metal Partitioning during the Evaporative Precipitation of Efflorescent Sulfate Salts from Acid Mine Drainage[J]. Chemical Geology, 2019, 530: 119339.
[13]
LANGE K, ROWE R K, JAMIESON H. Diffusion of Metals in Geosynthetic Clay Liners[J]. Geosynthetics International, 2009, 16(1): 11-27.
[14]
LI L Y, LI F. Heavy Metal Sorption and Hydraulic Conductivity Studies Using Three Types of Bentonite Admixes[J]. Journal of Environmental Engineering, 2001, 127(5):420-429.
[15]
ROWE R K, MUKUNOKI T, SANGAM H P. Benzene, Toluene, Ethylbenzene, m&p-Xylene, o-Xylene Diffusion and Sorption for a Geosynthetic Clay Liner at Two Temperatures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1211-1221.
[16]
ROWE R K, LAKE C B, PETROV R J. Apparatus and Procedures for Assessing Inorganic Diffusion Coefficients for Geosynthetic Clay Liners[J]. Geotechnical Testing Journal, 2000, 23(2): 206-214.
[17]
HUANG H, HE D, TANG Y, et al. Adsorption of Hexavalent Chromium from an Aqueous Phase by Hydroxypropyl Methylcellulose Modified with Diethylenetriamine[J]. Journal of Chemical & Engineering Data, 2019, 64(1): 98-106.
[18]
NI H, SHEN S Q, FU X L, et al. Assessment of Membrane and Diffusion Behavior of Soil-bentonite Slurry Trench Wall Backfill Consisted of Sand and Xanthan Gum Amended Bentonite[J]. Journal of Cleaner Production, 2022, 365: 132779.
[19]
傅贤雷, 杜延军, 沈胜强, 等. PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3669-3675.
(FU Xian-lei, DU Yan-jun, SHEN Sheng-qiang, et al. Study on Chemical Permeation Film Effect and Diffusion Characteristics of PAC Modified Bentonite/Sand Vertical Barrier Backfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Supp. 2): 3669-3675.) (in Chinese)
[20]
张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841-1848.
(ZHANG Chun-hua, WU Jia-wei, CHEN Yun, et al. Simplified Method for Determination of Thickness of Composite Liners Based on Contaminant Breakthrough Time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848.) (in Chinese)
[21]
张文杰, 黄依艺, 张改革. 填埋场污染物在有限厚度土层中一维对流-扩散-吸附解析解[J]. 岩土工程学报, 2013, 35(7):1197-1201.
(ZHANG Wen-jie, HUANG Yi-yi, ZHANG Gai-ge. Analytical Solution for 1D Advection-diffusion-adsorption Transport of Landfill Contaminants through a Soil Layer with Finite Thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7):1197-1201.) (in Chinese)
[22]
李木子, 翟远征, 左锐, 等. 地下水溶质迁移数值模型中的参数敏感性分析[J]. 南水北调与水利科技, 2014, 12(3):133-137.
(LI Mu-zi, ZHAI Yuan-zheng, ZUO Rui, et al. Sensitivity Analysis of Parameters in Numerical Simulation of Solute Transport in Groundwater[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(3): 133-137.) (in Chinese)
[23]
张洪伟, 王军进, 张国珍, 等. 地下水燃油污染物迁移模型的参数敏感性分析[J]. 兰州交通大学学报, 2018, 37(5): 74-79.
(ZHANG Hong-wei, WANG Jun-jin, ZHANG Guo-zhen, et al. Analysis of Parameters Sensitivity in Numeric Models of Groundwater Solute Migration[J]. Journal of Lanzhou Jiaotong University, 2018, 37(5): 74-79.) (in Chinese)

基金

国家自然科学基金项目(41602291)

责任编辑: 占学军
PDF(5575 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map