加筋土挡墙自振频率计算方法对比分析

蔡晓光, 蔡博渊, 李思汉, 黄鑫, 徐洪路, 朱晨

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 120-126.

PDF(6024 KB)
PDF(6024 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (4) : 120-126. DOI: 10.11988/ckyyb.20240043
岩土工程

加筋土挡墙自振频率计算方法对比分析

作者信息 +

Comparative Analysis of Calculation Methods for Natural Vibration Frequency of Reinforced Soil Retaining Walls

Author information +
文章历史 +

摘要

自振频率是加筋土挡墙抗震设计中的关键参数之一。针对非整体式的加筋土挡墙自振频率计算方法,迄今为止尚无统一认识。总结了现有的7种自振频率计算方法,以模块式加筋土挡墙(简称模块式)与复合式格宾土工格栅加筋土挡墙(简称复合式)为研究对象,通过比较实测结果与计算结果之间的准确性系数和绝对百分比误差,评估现有计算方法的有效性。分析结果表明:模块式和复合式模型位于不同高度处的自振频率基本一致。伍永胜的计算方法所得结果与实测值最为契合;Ghanbari的计算方法能够更有效减少参数变化对解析计算法的影响,从而展现出更强的适应性;徐鹏的计算方法在准确性及适应性方面具一定优势,应用范围更为广泛。在抗震设计中,建议加筋土挡墙施工前后对其自振频率进行评估,并将自振频率与面板水平位移相结合作为衡量结构损伤状态的指标之一。

Abstract

Natural vibration frequency is a crucial parameter in the seismic design of reinforced soil retaining walls. To date, there is no consensus on the calculation methods for the natural vibration frequency of non-monolithic reinforced soil retaining walls. This paper reviews seven existing methods for calculating the natural vibration frequency. Taking the modular reinforced soil retaining wall (hereinafter referred to as the modular type) and the composite gabion geogrid reinforced soil retaining wall (hereinafter referred to as the composite type) as research subjects, we assess the effectiveness of these existing calculation methods by comparing the accuracy coefficient and the absolute percentage error between the measured and calculated results. The analysis reveals that the natural vibration frequencies of the modular and composite models are generally consistent at different heights. Wu Yongsheng’s calculation method shows the closest agreement with the actual measurements. Ghanbari’s method can more effectively mitigate the influence of parameter changes on the analytical calculation, thus demonstrating stronger adaptability. Xu Peng’s method has certain advantages in terms of accuracy and adaptability, with a wider application scope. In seismic design, we recommend that engineers evaluate the natural vibration frequency of the reinforced soil retaining wall before and after construction and consider the horizontal displacement of the panels as an indicator to measure the structural damage state.

关键词

土工合成材料 / 加筋土挡墙 / 自振频率 / 振动台试验 / 对比分析

Key words

geosynthetic materials / reinforced soil retaining wall / natural frequency / shake table test / comparative analysis

引用本文

导出引用
蔡晓光, 蔡博渊, 李思汉, . 加筋土挡墙自振频率计算方法对比分析[J]. raybet体育在线 院报. 2025, 42(4): 120-126 https://doi.org/10.11988/ckyyb.20240043
CAI Xiao-guang, CAI Bo-yuan, LI Si-han, et al. Comparative Analysis of Calculation Methods for Natural Vibration Frequency of Reinforced Soil Retaining Walls[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 120-126 https://doi.org/10.11988/ckyyb.20240043
中图分类号: TU476   

参考文献

[1]
李思汉, 蔡晓光, 景立平, 等. 基于位移的模块式加筋土挡墙抗震设计方法研究[J]. 地震工程学报, 2023, 45(5): 1066-1074.
(LI Si-han, CAI Xiao-guang, JING Li-ping, et al. Displacement-based Seismic Design Methods of a Modular Reinforced Soil Retaining Wall[J]. China Earthquake Engineering Journal, 2023, 45(5): 1066-1074.) (in Chinese)
[2]
汪磊, 张垭, 向前勇, 等. 不同筋材刚度下加筋土挡墙离心模型试验[J]. raybet体育在线 院报, 2018, 35(10):109-114,136.
摘要
加筋土挡墙由于优良的力学性能、低廉的造价、更好的地形适应性,已经越来越广泛地被应用于各种工程。但其在正常工作状态下的真正工作机理尚不完全清楚,目前的规范设计指南并不能反映加筋土挡墙内部应力真实分布情况。为了研究不同筋材刚度对加筋土挡墙性能的影响,通过土工离心试验监测了土工格栅应变、面板水平位移和土压力。试验结果表明:采用小刚度筋材时,筋材的变形更加显著,但对竖向土压力的分布基本没有影响;靠近面板区域的土压力都远小于理论值,格栅最大应变出现在墙的中下部;对于面板连接处的筋材应变不能简单地用传统土压力理论解释,还需考虑填土不均匀沉降引起的面板对加筋土拉拽作用等其他影响因素。试验结果可为正常工况下加筋土挡墙工作性能与筋-土相互作用机理的研究提供参考。
(WANG Lei, ZHANG Ya, XIANG Qian-yong, et al. Centrifuge Tests of Reinforced Soil Retaining Wall with Different Reinforcement Stiffness[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10):109-114,136.) (in Chinese)
Reinforced soil retaining wall has been widely used in various projects because of its excellent mechanical properties, lower costs and better terrain adaptability. However, its real mechanism under working stress condition is not completely clear and current design guidelines could not reflect the real stress distribution in reinforced retaining wall. In order to research the behavior of reinforced retaining wall with different reinforcement stiffness, we monitor geogrid strain, horizontal displacement of facing, and earth pressure by geotechnical centrifuge tests. Results indicate that the deformation of reinforcement is more significant when using reinforcement of small stiffness,while the distribution of vertical earth pressure along the potential sliding surface is barely affected by stiffness. In both models, earth pressure adjoining to facing panel is much lower than theoretical value, and the maximum strain of geogrid appears in the mid-lower part of wall. Traditional earth pressure theory could not simply explain the reinforcement strain at panel connections. We should also take into account the pulling effect between panel and reinforced soil induced by differential settlement of backfill and other factors. The tests results offer reference for researching the behavior of reinforced soil retaining wall and the mechanism of interaction between soil and reinforcement under working stress conditions.
[3]
张世暖, 蔡晓光. 地震作用下双级加筋土挡墙的动力响应研究[J]. raybet体育在线 院报, 2017, 34(1): 129-134.
摘要
为了研究汶川地震中一处双级加筋土挡墙的破坏机理,利用FLAC<sup>3D</sup>有限差分软件进行动力分析;在此基础上,研究平台宽度的变化对双级加筋土挡墙抗震性能的影响。数值结果表明:汶川地震中,平台位置产生过大的水平位移和竖向位移是该双级加筋土挡墙发生局部破坏的原因;地震作用下,墙顶处水平位移最大值与不同的平台宽度之间呈非线性关系,上级挡墙的水平位移最大值随平台宽度的增加先减小后增大,而下级挡墙的水平位移最大值则随平台宽度的增加先增大后减小;增大平台宽度可以减小下级挡墙面板附近填土的竖向位移;在低烈度时,平台宽度对峰值加速度(Peak Ground Acceleration, PGA)放大系数影响较小;在高烈度时,平台宽度对PGA放大系数影响较大。因此通过设计合理的平台宽度能提高双级加筋土挡墙抗震性能。
(ZHANG Shi-nuan, CAI Xiao-guang. Dynamic Response of Two-stage Reinforced Soil-retaining Wall under Seismic Action[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(1): 129-134.) (in Chinese)
Dynamic analysis was conducted with FLAC<sup>3D</sup> to study the failure mechanism of a two-stage reinforced soil-retaining wall in Wenchuan earthquake. On this basis, the effect of platform width on the seismic performance of the wall was researched. The numerical results reveal that too large horizontal and vertical displacement at the platform is the cause of local failure of the wall. Under seismic action, the maximum horizontal displacement at the top of the wall is in a non-linear relationship with the platform width, and the maximum horizontal displacement of the upper wall firstly decreases with the increase of platform width and then increases; while the horizontal displacement of the lower wall firstly grows with the increase of platform width and then decreases. Vertical displacement of backfill near by the lower wall panel could be reduced by increasing the platform width. Moreover, under low seismic intensity, platform width has no apparent effect on the magnification of PGA (Peak Ground Acceleration) but in the opposite under high intensity. Therefore, the seismic performance of two-stage reinforced soil retaining wall could be improved by designing a reasonable platform width.
[4]
ABBASI O, GHANBARI A, HOSSEINI S A A. An Analytical Method for Calculating the Natural Frequency of Reinforced Retaining Walls with Soil-Structure Interaction Effect[J]. Geosynthetics International, 2014, 21(1): 53-61.
[5]
RICHARDSON G N, FEGER D, FONG A, et al. Seismic Testing of Reinforced Earth Walls[J]. Journal of the Geotechnical Engineering Division, 1977, 103(1): 1-17.
[6]
DARVISHPOUR A, GHANBARI A, HOSSEINI S A A, et al. An Analytical Model for Determining the Effect of Damping on 3D Natural Frequency of Reinforced Walls[J]. Journal of Measurements in Engineering, 2018, 6(1): 35-52.
[7]
MATUO H, OHARA S. Lateral Earth Pressure and Stability of Quay Walls during Earthquakes[R]. Yoshida, Yamaguchi-shi: Yamaguchi University, 1960.
[8]
WU G X. Dynamic Soil-structure Interaction: Pile Foundations and Retaining Structures[D]. Vancouver: University of British Columbia, 1994: 56-59.
[9]
SARBISHEI S, FAKHER A. Energy-based Horizontal Slice Method for Pseudo-static Analysis of Reinforced Walls[J]. Geosynthetics International, 2012, 19(5): 370-384.
[10]
GHANBARI A, HOOMAAN E, MOJALLAL M. An Analytical Method for Calculating the Natural Frequency of Retaining Walls[J]. International Journal of Civil Engineering, 2013, 11(1): 1-9.
[11]
RAMEZANI M S, GHANBARI A, HOSSEINI S A A. Analytical Method for Calculating Natural Frequencies of Geosynthetic-reinforced Wall with Full-height Concrete Facing[J]. Geosynthetics International, 2017, 24(1): 1-13.
[12]
徐鹏, 蒋关鲁, 胡耀芳, 等. 整体刚性面板加筋土挡墙基频影响因素计算分析[J]. 岩土力学, 2018, 39(12):4475-4481.
(XU Peng, JIANG Guan-lu, HU Yao-fang, et al. Calculation and Analysis of Influencing Factors of Fundamental Frequency of Integral Rigid Panel Reinforced Soil Retaining Wall[J]. Geotechnical Mechanics, 2018, 39(12): 4475-4481.) (in Chinese)
[13]
XU P, HATAMI K, LI T. Natural Frequencies of Full-height Panel Reinforced Soil Walls of Variable Cross-section[J]. Geosynthetics International, 2019, 26(3):320-331.
[14]
BATHURST R J, HATAMI K. Seismic Response Analysis of a Geosynthetic-reinforced Soil Retaining Wall[J]. Geosynthetics International, 1998, 5(1/2): 127-166.
[15]
BATHURST R, HATAMI K, ALFARO M. Geosynthetic-reinforced Soil Walls and Slopes-Seismic Aspects[M]//Handbook of Geosynthetic Engineering. Leeds, UK: Thomas Telford Limited, 2022.
[16]
伍永胜. 加筋土挡墙动力特性及抗震设计方法研究[D]. 长沙: 湖南大学, 2006.
(WU Yong-sheng. Study on Dynamic Characteristics and Seismic Design Method of Reinforced Earth Retaining Wall[D]. Changsha: Hunan University, 2006.) (in Chinese)
[17]
路彤. 复合式格宾土工格栅加筋土挡墙动力特性振动台试验分析[D]. 廊坊: 防灾科技学院, 2019.
(LU Tong. Shaking Table Test Analysis of Dynamic Characteristics of Composite Gabion Geogrid Reinforced Earth Retaining Wall[D]. Langfang: Institute of Disaster Prevention, 2019.) (in Chinese)
[18]
IAI S. Similitude for Shaking Table Tests on Soil-structure-fluid Model in 1g Gravitational Field[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(6): 343.
[19]
GULER E, SELEK O. Reduced-scale Shaking Table Tests on Geosynthetic-reinforced Soil Walls with Modular Facing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 421-437.
[20]
ZHENG Y, MCCARTNEY J, SHING P, et al. Physical Model Tests of Half-scale Geosynthetic Reinforced Soil Bridge Abutments Dynamic Loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, Doi: 10.1061/(ASCE)GT.1943-5606.000215.
[21]
李思汉. 模块式加筋土挡墙动力反应试验研究及数值分析[D]. 廊坊: 防灾科技学院, 2018.
(LI Si-han. Test Study and Numerical Analysis on Dynamic Response of Block Reinforced Soil Retaining Walls[D]. Langfang: Institute of Disaster Prevention, 2018.) (in Chinese)
[22]
CAI X, ZHANG S, LI S, et al. Dynamic Characteristics of Reinforced Soil Retaining Wall with Composite Gabion Based on Time Domain Identification Method[J]. Sustainability, 2022, 14(23): 16321.

基金

地震科技星火计划项目(XH23067YA)
廊坊市科学技术研究与发展计划项目(2023013205)
河北省高等学校科学研究计划项目(BJK2024034)
江苏省地质工程环境智能监控工程研究中心开放基金项目(2023-ZNJKJJ-06)

编辑: 黄玲
PDF(6024 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map