基于嵌套主成分回归模型的长江源区径流重建

姜晓萱, 王文卓, 袁喆, 霍军军, 周涛

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 202-210.

PDF(7303 KB)
PDF(7303 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 202-210. DOI: 10.11988/ckyyb.20241180
长江源科学考察与研究专栏

基于嵌套主成分回归模型的长江源区径流重建

作者信息 +

Reconstruction of Runoff in the Source Region of Yangtze River Based on Nested Principal Component Regression Modeling

Author information +
文章历史 +

摘要

基于嵌套主成分回归模型,重建了长江源区公元1433—2002年的天然年径流序列,探讨了其历史变化特征与干湿事件演变及周期性波动。利用树轮数据及径流观测数据,结合模型评估指标(CRSQ、VRSQ、RE、CE),证明了该模型的重建精确性。研究结果表明,在过去570 a中,长江源区年径流量整体呈显著波动,识别出6个湿润期与9个干旱期,其中1451—1510年和1596—1645年是最长的湿润期,1848—1903年是持续时间最长的干旱期。重建时期的干旱与长江流域青藏高原等地区的干旱时期较为吻合,表明长江源区重建径流变化能够反映大尺度的气候波动。此外,长江源区重建径流序列存在4~8、16~32、50~100、100~200 a的显著周期性波动,可能受ENSO(厄尔尼诺-南方涛动)、东亚夏季风(EASM)变化、太平洋年代际振荡(PDO)及大西洋多年代际振荡(AMO)共同驱动,也反映了全球气候长期变化及青藏高原冰川与积雪消融趋势的影响。

Abstract

This study employs a nested principal component regression model to reconstruct the natural annual runoff series for the Yangtze River source region from 1433 to 2002. It explores historical variability, the evolution of wet and dry events, and periodic fluctuations. Using tree-ring data and observed runoff data, the model’s accuracy is validated through evaluation indicators (CRSQ, VRSQ, RE, and CE). Results indicate that over the past 570 years, the annual runoff in the Yangtze River source region has experienced significant fluctuations. Six wet periods and nine dry periods are identified, with the longest wet periods occurring from 1451 to 1510 and from 1596 to 1645, and the longest dry period spanning from 1848 to 1903. The dry periods during the reconstruction period align with droughts on the Tibetan Plateau and in other areas of the Yangtze River basin, suggesting that the reconstructed runoff changes in the Yangtze River source region reflect large-scale climate fluctuations. Furthermore, the reconstructed runoff series for the Yangtze River source region exhibits significant periodic fluctuations at intervals of 4-8 years, 16-32 years, 50-100 years, and 100-200 years. These fluctuations are likely driven by the combined effects of ENSO (El Niño-Southern Oscillation), the East Asian Summer Monsoon (EASM), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO), and also reflect the impact of global climate change and the trends of glacier and snowmelt on the Tibetan Plateau.

关键词

径流量 / 重建 / 树木年轮 / 嵌套主成分回归模型 / 长江源区

Key words

runoff / reconstruction / tree annual rings / nested principal component regression model / Yangtze River source region

引用本文

导出引用
姜晓萱, 王文卓, 袁喆, . 基于嵌套主成分回归模型的长江源区径流重建[J]. raybet体育在线 院报. 2025, 42(3): 202-210 https://doi.org/10.11988/ckyyb.20241180
JIANG Xiao-xuan, WANG Wen-zhuo, YUAN Zhe, et al. Reconstruction of Runoff in the Source Region of Yangtze River Based on Nested Principal Component Regression Modeling[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(3): 202-210 https://doi.org/10.11988/ckyyb.20241180
中图分类号: P333   

参考文献

[1]
LI X, ZHANG K, GU P, et al. Changes in Precipitation Extremes in the Yangtze River Basin during 1960-2019 and the Association with Global Warming, ENSO, and Local Effects[J]. Science of the Total Environment, 2021, 760: 144244.
[2]
WANG Q, XU Y, CAI X, et al. Role of Underlying Surface, Rainstorm and Antecedent Wetness Condition on Flood Responses in Small and Medium Sized Watersheds in the Yangtze River Delta Region, China[J]. Catena, 2021, 206: 105489.
[3]
CUI L, HE M, ZOU Z, et al. The Influence of Climate Change on Droughts and Floods in the Yangtze River Basin from 2003 to 2020[J]. Sensors, 2022, 22(21): 8178.
[4]
JIAO D, WANG D, H. Effects of Human Activities on Hydrological Drought Patterns in the Yangtze River Basin, China[J]. Natural Hazards, 2020, 104: 1111-1124.
[5]
ZHANG D, CHEN P, ZHANG Q, et al. Copula-based Probability of Concurrent Hydrological Drought in the Poyang Lake-catchment-river System (China) from 1960 to 2013[J]. Journal of Hydrology, 2017, 553: 773-784.
[6]
王根绪, 李琪, 程国栋, 等. 40a来江河源区的气候变化特征及其生态环境效应[J]. 冰川冻土, 2001, 23(4): 346-352.
摘要
通过江河源区分布的5个气象台站有关气温与降水的多年数据,分析了近40 a来江河源区的气候变化特征.结果表明:近40a来江河源区气候变化的总趋势是气温升高,降水量增加,但降水量的增加主要体现在春季降水和近15 a来冬季降水的明显增加上,对植被生长起重要作用的夏季降水量却呈明显减少趋势;江河源区20世纪80年代10 a平均气温比50年代高0.12~0.9℃,大部分地区高于0.3℃,属于青藏高原高温区或升温幅度最大的地区之一,平均升温0.44℃,明显比全国平均升温0.2℃要高出一倍.在这种背景下,与植被生长关系密切的4、5月和9月气温呈现持续下降态势.江河源区脆弱的生态环境体系对气候的这种变化响应强烈,冰川退缩、多年冻土消融加剧,导致大范围高寒草甸与草原植被退化.
(WANG Gen-xu, LI Qi, CHENG Guo-dong, et al. Climate Change and Its Impact on the Eco-environment in the Source Regions of the Yangtze and Yellow Rivers in Recent 40 Years[J]. Journal of Glaciolgy and Geocryology, 2001, 23(4): 346-352. (in Chinese))
[7]
李林, 李凤霞, 郭安红, 等. 近43年来“三江源” 地区气候变化趋势及其突变研究[J]. 自然资源学报, 2006, 21(1): 79-85.
(LI Lin, LI Feng-xia, GUO An-hong, et al. Study on the Climate Change Trend and Its Catastrophe over “Sanjiangyuan” Region in Recent 43 Years[J]. Journal of Natural Resources, 2006, 21(1): 79-85. (in Chinese))
[8]
朱海涛. 长江源区长序列径流变化规律及其与气象要素的关系分析[J]. 中国农学通报, 2019, 35(22): 123-129.
摘要
基于长江源区1956-2012年水文气象资料,采用集中期和集中度、突变检验、小波变换等方法,分析了长江源区沱沱河站和直门达站年径流变化的趋势性、突变性和周期性,并从相关性和径流系数变化方面探讨了径流变化对气象要素的响应。结果表明:长江源径流年内分配的集中程度呈弱增加趋势,集中期均呈弱延后趋势。沱沱河站、直门达站1956~2012年年径流量均呈显著增加趋势。沱沱河站年径流在1997年发生突变,直门达站在1961和1967年发生突变。沱沱河站年径流存在20-28年、12年的显著周期。直门达站年径流存在8年、24-28年的显著周期。长江源径流与降水、气温呈显著正相关,与水面蒸发呈显著负相关。降水是三江源径流的主要来源,沱沱河径流组成中冰川消融量占比站较直门达站大。
(ZHU Hai-tao. Long Sequence Runoff in the Source of the Yangtze River: Variation Law and Its Relationship with Meteorological Elements[J]. Chinese Agricultural Science Bulletin, 2019, 35(22): 123-129. (in Chinese))
Based on the hydrometeorological data of the source of the Yangtze River(SYR) during 1956 and 2012, we used concentration period and concentration degree, linear trend test, mutation test and wavelet transform to analyze the trend of mutation and periodicity of annual runoff time series of Tuotuohe station and Zhimen station, and study the response of runoff variation to meteorological factors. The results showed that the concentration ratio of runoff in the SYR basically increase slightly,and the concentration period postponed slightly. The annual runoff presented
[9]
康世昌, 张拥军, 秦大河, 等. 近期青藏高原长江源区急剧升温的冰芯证据[J]. 科学通报, 2007, 52(4): 457-462.
(KANG Shi-chang, ZHANG Yong-jun, QIN Da-he, et al. Ice Core Evidence of Recent Sharp Warming in the Source Area of the Yangtze River on the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2007, 52(4): 457-462. (in Chinese))
[10]
许继军, 吴江. 长江流域建立水资源刚性约束制度的关键问题与对策研究[J]. 中国水利, 2024(9): 34-38.
(XU Ji-jun, WU Jiang. Research on Key Issues and Strategies for Establishing a Water Resources Rigid Constraints System in the Yangtze River Basin[J]. China Water Resources, 2024(9): 34-38. (in Chinese))
[11]
GOU X, DENG Y, CHEN F, et al. Tree Ring Based Streamflow Reconstruction for the Upper Yellow River over the Past 1234 Years[J]. Chinese Science Bulletin, 2010, 55(36): 4179-4186.
[12]
FRITTS H C, BLASING T J, HAYDEN B P, et al. Multivariate Techniques for Specifying Tree-growth and Climate Relationships and for Reconstructing Anomalies in Paleoclimate[J]. Journal of Applied Meteorology, 1971, 10(5): 845-864.
[13]
COOK E R, MEKO D M, STOCKTON C W. A New Assessment of Possible Solar and Lunar Forcing of the Bidecadal Drought Rhythm in the Western United States[J]. Journal of Climate, 1997, 10(6):1343-1356.
[14]
COOK E R, ANCHUKAITIS K J, BUCKLEY B M, et al. Asian Monsoon Failure and Megadrought during the last Millennium[J]. Science, 2010, 328(5977): 486-489.
The Asian monsoon system affects more than half of humanity worldwide, yet the dynamical processes that govern its complex spatiotemporal variability are not sufficiently understood to model and predict its behavior, due in part to inadequate long-term climate observations. Here we present the Monsoon Asia Drought Atlas (MADA), a seasonally resolved gridded spatial reconstruction of Asian monsoon drought and pluvials over the past millennium, derived from a network of tree-ring chronologies. MADA provides the spatiotemporal details of known historic monsoon failures and reveals the occurrence, severity, and fingerprint of previously unknown monsoon megadroughts and their close linkages to large-scale patterns of tropical Indo-Pacific sea surface temperatures. MADA thus provides a long-term context for recent monsoon variability that is critically needed for climate modeling, prediction, and attribution.
[15]
MIDDELKOOP H, DAAMEN K, GELLENS D, et al. Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin[J]. Climatic Change, 2001, 49(1/2): 105-128.
[16]
WOODHOUSE C A. A Tree-ring Reconstruction of Mean Annual Stream-Flow for Middle Boulder Creek, Colorado, USA[J]. Journal of the American Water Resources Association, 2001, 37: 561-570.
[17]
邵雪梅, 梁尔源, 黄磊, 等. 柴达木盆地东北部过去1437 a的降水变化重建[J]. 气候变化研究进展, 2006, 2(3): 122-126.
(SHAO Xue-mei, LIANG Er-yuan, HUANG Lei, et al. A Reconstructed Precipitation Series over the Past Millennium in the Northeastern Qaidam Basin[J]. Climate Change Research, 2006, 2(3): 122-126. (in Chinese))
[18]
LIU X, QIN D, SHAO X, et al. Temperature Variations Recovered from Tree-rings in the Middle Qilian Mountain over the Last Millennium[J]. Science in China Series D: Earth Sciences, 2005, 48(4): 521-529.
[19]
SHAO X. Reconstruction of Precipitation Variation from Tree Rings in Recent 1000 Years in Delingha, Qinghai[J]. Science in China Series D, 2005, 48(7): 939.
[20]
LIU Y, AN Z, LINDERHOLM H W, et al. Annual Temperatures during the last 2485 Years in the Mid-eastern Tibetan Plateau Inferred from Tree Rings[J]. Science in China Series D: Earth Sciences, 2009, 52(3): 348-359.
[21]
LI J, SHAO X, QIN N, et al. Runoff Variations at the Source of the Yangtze River over the Past 639 Years Based on Tree-ring Data[J]. Climate Research, 2018, 75(2): 131-142.
[22]
LIANG E, SHAO X, QIN N. Tree-ring Based Summer Temperature Reconstruction for the Source Region of the Yangtze River on the Tibetan Plateau[J]. Global and Planetary Change, 2008, 61(3/4): 313-320.
[23]
杜嘉妮, 蔡宜晴, 王岗. 长江源区径流变化归因分析[J]. 水文, 2021, 41(6): 73-78.
(DU Jia-ni, CAI Yi-qing, WANG Gang. Attribution Analysis of Runoff in the Source Region of the Yangtze River[J]. Journal of China Hydrology, 2021, 41(6): 73-78. (in Chinese))
[24]
胡圆昭. 长江源区径流演变规律及月径流量预测研究[D]. 兰州: 兰州交通大学, 2023.
(HU Yuan-zhao. Study on Runoff Evolution Law and Monthly Runoff Prediction in the Source Area of the Yangtze River[D]. Lanzhou: Lanzhou Jiaotong University, 2023. (in Chinese))
[25]
WOODHOUSE C A, LUKAS J J. Multi-century Tree-ring Reconstructions of Colorado Streamflow for Water Resource Planning[J]. Climatic Change, 2006, 78(2): 293-315.
[26]
MEKO D, COOK E R, STAHLE D W, et al. Spatial Patterns of Tree-growth Anomalies in the United States and Southeastern Canada[J]. Journal of Climate, 1993, 6(9): 1773-1786.
[27]
王文卓, 张建云, 陈峰, 等. 黄河源区雨季降水与汛期径流量重建及其千年尺度下的演变特征[J]. 水科学进展, 2022, 33(6):868-880.
(WANG Wen-zhuo, ZHANG Jian-yun, CHEN Feng, et al. Reconstructions of Rainy Season Precipitation and Flood Season Streamflow in the Headwater Catchment of the Yellow River and Their Evolution Characteristics on a Millennium Scale[J]. Advances in Water Science, 2022, 33(6):868-880. (in Chinese))
[28]
梁川, 侯小波, 潘妮. 长江源高寒区域降水和径流时空变化规律分析[J]. 南水北调与水利科技, 2011, 9(1): 53-59.
(LIANG Chuan, HOU Xiao-bo, PAN Ni. Spatial and Temporal Variations of Precipitation and Runoff in the Source Region of the Yangtze River[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(1): 53-59. (in Chinese))
[29]
COOK E R, PALMER J G, AHMED M, et al. Five Centuries of Upper Indus River Flow from Tree Rings[J]. Journal of Hydrology, 2013, 486: 365-375.
[30]
TIMILSENA J, PIECHOTA T C, HIDALGO H, et al. Five Hundred Years of Hydrological Drought in the Upper Colorado River Basin[J]. JAWRA Journal of the American Water Resources Association, 2007, 43(3):798-812.
[31]
AGAFONOV L, MEKO D, PANYUSHKINA I. Reconstruction of Ob River, Russia, Discharge from Ring Widths of Floodplain Trees[J]. Journal of Hydrology, 2001, 543: 198-207.
[32]
郑景云, 张学珍, 刘洋, 等. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报, 2020, 75(7): 1432-1450.
摘要
依据近年发表的新成果,对中国过去千年干湿的年至百年尺度变化特征进行了总结梳理与对比分析,综合评估了20世纪干湿变幅的历史地位。主要结论是:① 根据历史文献记载重建的东中部各区干湿序列在1400年以后均达高信度,但其前因存在记录缺失,仅有半数时段的重建结果达高信度。在东北及内蒙古东部,根据不同地点湖沼沉积物记录揭示的区域干湿百年尺度变化特征在多数时段不一致。在西部的黄土高原、河西走廊、新疆中北部、青藏高原东北部和东南部等地区,利用不同地点树轮资料重建的干湿序列显示的干湿变化特征在区内一致性高。② 过去千年中国各地干湿变化均存在显著的年际、年代际和百年尺度周期。其中准2.5 a、60~80 a和110~120 a等尺度的周期为所有地区共有;3.5~5.0 a、20~35 a等尺度周期则主要发生在东北、东中部地区、黄土高原和青藏高原;而准45 a周期则只发生在东北和东中部地区(均超过90%信度水平);各区域间的干湿变化位相并不同步。③ 尽管已发现青藏高原东北部20世纪很可能是过去3000 a最湿的世纪之一,但其他大多数区域的重建结果显示:20世纪的干湿变幅在年代际尺度上均未超出其前各个时段的变率范围。
(ZHENG Jing-yun, ZHANG Xue-zhen, LIU Yang, et al. The Assessment on Hydroclimatic Changes of Different Regions in China at Multi-scale during the Past Millennium[J]. Acta Geographica Sinica, 2020, 75(7): 1432-1450. (in Chinese))

Based on the latest hydroclimatic reconstructions in peer-reviewed scientific journals, we summarize the multi-scale pattern on hydroclimatic changes and assess whether or not the variability of the 20th century is unusual in the context of the past millennium for different regions of China. The main conclusions are as follows: (1) In the central-eastern China, the dry/wet series reconstructed from historical documents after 1400 have high confidence level, while before 1400, the reconstructions only in half of the period have high confidence due to the shortage of records. In northeastern China and eastern Inner Mongolia, centennial-scale reconstructions from lake sediments at multiple sites are in low agreement in most of periods. In Loess Plateau, Hexi Corridor, central to northern Xinjiang, northeastern and southeastern Tibetan Plateau, hydroclimatic reconstructions from tree rings have robust agreement within the same region. (2) All sub-regions of China show significant cycles with 90% confidence level at inter-annual, inter-decadal and centennial scales. The cycles of 2.5 a, 60-80 a and 110-120 a are detected over all the regions, while the cycles of 3.5-5.0 a and 20-35 a mainly occur in the Loess Plateau, Tibetan Plateau, northeastern and central-eastern China. The cycle of quasi-45 a only occurs in northeastern and central-eastern China. Moreover, the hydroclimatic changes are out of phase in different regions. (3) The 20th century is one of the wettest centuries in the past 3000 years in northeastern Tibetan Plateau. However, most series from other regions show that the inter-decadal hydroclimatic variability of the 20th century does not exceed the amplitude of natural variability, which had ever occurred during the past millennium.

[33]
TIMILSENA J, PIECHOTA T, TOOTLE G, et al. Associations of Interdecadal/Interannual Climate Variability and Long-term Colorado River Basin Streamflow[J]. Journal of Hydrology, 2009, 365(3/4):289-301.
[34]
MARGOLIS E Q, MEKO D M, TOUCHAN R. A Tree-ring Reconstruction of Streamflow in the Santa Fe River, New Mexico[J]. Journal of Hydrology, 2011, 397(1/2):118-127.
[35]
SHI X, QIN N, ZHU H, et al. May-June Mean Maximum Temperature Change during 1360-2005 as Reconstructed by Tree Rings of Sabina Tibetica in Zaduo,Qinghai Province[J]. Chinese Science Bulletin, 2010, 55(26):3023-3029.
[36]
黄忠恕. 长江流域历史水旱灾害分析[J]. 人民长江, 2003, 34(2): 1-3.
(HUANG Zhong-shu. Analysis of Historical Flood and Drought Disasters in the Yangtze River Basin[J]. Yangtze River, 2003, 34(2): 1-3. (in Chinese))
[37]
ZHANG Y, GOU X, CHEN F, et al. A 1232-year Tree-ring Record of Climate Variability in the Qilian Mountains, Northwestern China[J]. IAWA Journal, 2009, 30(4): 407-420.
[38]
LIANG E, LIU X, YUAN Y, et al. The 1920s Drought Recorded by Tree Rings and Historical Documents in the Semi-arid and Arid Areas of Northern China[J]. Climatic Change, 2006, 79(3): 403-432.
[39]
LAU K M, WENG H. Climate Signal Detection Using Wavelet Transform: How to Make a Time Series Sing[J]. Bulletin of the American Meteorological Society, 1995, 76(12): 2391-2402.
[40]
王姝, 李金建, 秦宁生. 基于历史帕默尔干旱指数(PDSI)数据集重建的长江源区过去706 a径流量[J]. 中国沙漠, 2019, 39(3): 126-135.
摘要
利用亚洲季风区帕默尔干旱指数(PDSI)重建格点数据集(Monsoon Asia Drought Atlas,MADA)中长江源及附近地区的5个格点序列,通过PDSI与长江源区径流量的相关分析,发现5个格点的第一主成分(PC1)与长江源区夏季(6—8月)平均径流量的相关性最大(r=0.609,N=50,α<0.001)。由此,重建了1300—2005年长江源区夏季径流量变化,并运用独立验证法对重建结果的可靠性进行了检验,运用小波分析方法对重建径流序列进行周期分析。结果表明:近706 a,长江源区经历了显著的丰水期13个、枯水期15个,其中持续时间最长的丰水期为1513—1573年,持续时间最长的枯水期为1389—1414年;重建序列主要存在2~6、10~13、20~26、30~50、50~70 a的显著周期振荡。重建序列与海表温度的相关性表明,长江源区径流变化可能与厄尔尼诺-南方涛动(ENSO)、大西洋年际振荡(AMO)、北大西洋涛动(NAO)、太平洋年代际振荡(PDO)等有关。
(WANG Shu, LI Jin-jian, QIN Ning-sheng. Runoff Reconstruction for the Source of the Yangtze River over the Past 706 Years Based on Historical PDSI Dataset[J]. Journal of Desert Research, 2019, 39(3): 126-135. (in Chinese))
Five grid sequences near the source of the Yangtze River were selected from the reconstructed PDSI gridded datasets in the Asian monsoon region(Monsoon Asia Drought Atlas,MADA). Based on the correlation analysis between PDSI and the runoff in the source region of the Yangtze River, it was found that the first principal component (PC1) of the five grids has the largest correlation (<i>r</i>=0.609,<i>N</i>=50, <i>α</i><0.001) with the average runoff in the summer (June-August). A record of summer runoff at the source of Yangtze River from 1300-2005 was then reconstructed, and the reliability of the reconstruction equation was tested by the independent verification method. As indicated by the reconstruction, 13 periods of high flow and 15 periods of low flow occurred during the previous 706 years. The longest periods of high flow occurred during 1513-1573, while the longest period of low flow occurred during 1389-1414. Wavelet analysis demonstrated that the reconstructed sequence mainly has significant periodic oscillations of 2-6 years, 10-13 years, 20-26 years, 30-50 years and 50-70 years. Correlation analysis between reconstruction and global sea surface temperature indicated that the runoff variation might be related to ENSO, AMO, NAO, PDO and so on.

基金

国家重点研发计划项目(2023YFC3206602)

编辑: 陈 敏
PDF(7303 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map