PDF(5040 KB)
循环荷载下牡蛎壳粉改性膨胀土累积应变规律
陈川, 唐正辉, 黄震, 周维政, 邵羽, 贡斌
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 125-132.
PDF(5040 KB)
PDF(5040 KB)
循环荷载下牡蛎壳粉改性膨胀土累积应变规律
Cumulative Strain Law of Expansive Soil Reinforced with Oyster Shell Powder under Cyclic Loading
为探究循环荷载下牡蛎壳粉改性膨胀土的累积应变和累积孔压发展规律,采用动三轴试验系统对膨胀土施加循环荷载以模拟车辆动力作用。试验涉及不同牡蛎壳粉粒径(dosp)、掺量(Fosp)和循环应力比(CSR)条件下的轴向累积应变和累积孔压发展规律。研究结果表明:当dosp<0.5 mm时,改性土的轴向累积应变和累积孔压随牡蛎壳粉掺量的增加而明显改善;当Fosp=9%、dosp<0.5 mm时,改性土的动力性能较为接近;当dosp>0.5 mm时,改性土的动力性能指标相比于素土有所劣化,且这种劣化作用随着牡蛎壳粉掺量的增加和粒径的增大而更加显著。根据研究结果,当牡蛎壳粉改性土用作设计速度200 km/h以下的有砟轨道铁路路基填料时,建议控制牡蛎壳粉掺量为Fosp=9%,粒径控制在dosp=(0.25,0.5]mm范围内。
This study investigates the development of cumulative strain and cumulative pore pressure of expansive soil reinforced with oyster shell powder (OSP) under cyclic loading. A GDS dynamic triaxial test system was employed to simulate vehicle dynamic actions on the soil. The experiment examines axial cumulative strain and cumulative pore pressure under particle size (dosp), dosage (Fosp), and cyclic stress ratio (CSR). Findings reveal that for particle sizes dosp<0.5 mm, both axial cumulative strain and cumulative pore pressure in the modified soil significantly improve with increasing OSP content. However, when Fosp=9% and dosp=0.5 mm, the dynamic performance of the modified soil is relatively stable. Conversely, for particle sizes dosp>0.5 mm, the dynamic performance of the modified soil deteriorates compared to plain soil, with this degradation becoming more pronounced as both OSP content and particle size increase. Based on these results, if OSP-modified soil is used as roadbed filler for ballasted track railways with design speeds below 200 km/h, it is recommended to control the OSP content at Fosp=9%, with particle sizes limited to the range of (0.25,0.5] mm to maintain optimal dynamic performance.
膨胀土 / 牡蛎壳粉 / 列车循环荷载 / 累计应变 / 孔压
expansive soil / oyster shell powder / train cyclic load / cumulative strain / pore pressure
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
黄震, 边林林, 刘莹, 等. 牡蛎壳粉改良膨胀土的工程特性及微观机理研究[J]. 铁道科学与工程学报, 2023, 20(5): 1729-1739.
(
|
| [6] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴-2022[M]. 北京: 中国农业出版社, 2022.
(Fishery and Fishery Administration of the Ministry of Agriculture and Rural Affairs, National Aquatic Technology Extension Station, Chinese Fisheries Society. China Fishery Statistical Yearbook 2022[M]. Beijing: China Agriculture Press, 2022. (in Chinese))
|
| [7] |
庄心善, 王俊翔, 王康, 等. 风化砂改良膨胀土的动力特性研究[J]. 岩土力学, 2018, 39(增刊2):149-156.
(
|
| [8] |
庄心善, 王俊翔, 李凯, 等. 风化砂改良膨胀土的滞回曲线特征对比研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3709-3716.
(
|
| [9] |
林万锋, 庄心善. 磷尾矿最佳掺量下改良膨胀土的动力特性试验[J]. 土工基础, 2022, 36(2):269-272.
(
|
| [10] |
庄心善, 周睦凯, 陶高梁, 等. 循环荷载下发泡聚苯乙烯改良膨胀土动弹性模量与阻尼比试验研究[J]. 岩土力学, 2021, 42(9): 2427-2436.
(
|
| [11] |
GB 50112—2013,膨胀土地区建筑技术规范[S]. 北京: 中国建筑工业出版社, 2013.
(GB 50112—2013,Technical Code for Building in Expansive Soil Regions[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese))
|
| [12] |
张涛. 地铁列车荷载下不同固结度重塑粘土动力特性试验研究[D]. 杭州: 浙江大学, 2014.
(
|
| [13] |
杨俊, 黎新春, 张国栋, 等. 不同粒径风化砂改良膨胀土的特性试验[J]. 成都理工大学学报(自然科学版), 2015(1): 26-33.
(
|
| [14] |
李国维, 巩齐齐, 李涛, 等. 崩解性砂软岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 2021, 29(1):34-43.
(
|
| [15] |
李国维, 王佳奕, 陈伟, 等. 干湿循环对不同粒径组崩解性砂岩改良膨胀土的影响[J]. 岩土工程学报, 2022, 44(4): 643-651.
(
|
| [16] |
侯天顺, 徐光黎. EPS粒径对轻量土抗剪强度的影响规律[J]. 岩土工程学报, 2011, 33(10): 1634-1641.
(
|
| [17] |
谢书萌, 徐光黎, 叶三霞, 等. 不同EPS粒径下轻量土变形强度特性三轴试验研究[J]. 水电能源科学, 2013, 31(2): 138-141.
(
|
| [18] |
|
| [19] |
GB/T 50269—2015, 地基动力特性测试规范[S]. 北京: 中国计划出版社, 2016.
(GB/T 50269—2015, Code for Measurement Methods of Dynamic Properties of Subsoil[S]. Beijing: China Planning Press, 2016. (in Chinese))
|
| [20] |
TB 10001—2016, 铁路路基设计规范[S]. 北京: 中国铁道出版社, 2017.
(TB 10001—2016, Code for the Design of Railway Subgrades[S]. Beijing: China Railway Publishing House, 2017. (in Chinese))
|
| [21] |
TB 10035—2018, 铁路特殊路基设计规范[S]. 北京: 中国铁道出版社, 2018.
(TB 10035—2018, Code for Design on Special Railway Earth Structure[S]. Beijing: China Railway Publishing House, 2018. (in Chinese))
|
/
| 〈 |
|
〉 |