石灰改良分散性土拌和工艺与压实特性

何建新, 高鹏展, 杨海华, 杨伟, 文军, 耿旭, 王宁远

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 118-124.

PDF(5476 KB)
PDF(5476 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 118-124. DOI: 10.11988/ckyyb.20231188
岩土工程

石灰改良分散性土拌和工艺与压实特性

作者信息 +

Mixing Technique and Compaction Characteristics of Lime-improved Dispersive Soil

Author information +
文章历史 +

摘要

新疆某水库心墙坝用土为分散性土,设计采用掺1%石灰进行处理。为确保使用石灰改良分散性土的心墙坝工程质量,实现拌和的均匀效果,在碾压试验的基础上,使用ZB05型冷再生路拌机对石灰分别进行1、2、4、6次的拌和,通过SG-6型多功能直读式测钙仪随机快速检测土料石灰含量,对石灰改良土的均匀性进行质量控制;探究陈化时间对改良土击实特性的影响,并结合室内压缩和直剪试验研究现场施工环境下龄期对改良土物理力学性能的影响规律。结果表明:当碾压8遍且摊铺厚度为30、35 cm时,沉降量已基本稳定,干密度可满足≥1.73 g/cm3、压实度可满足≥99%的条件;在搅拌遍数为6时,拌和石灰的均匀性趋于稳定,变异系数为0.28;石灰改良土的陈化时间越长越不利碾压,按99%的压实度时评价陈化时间应≤9 h;改良土的压缩性和强度受龄期影响明显,龄期增大,石灰改良土的压缩性减小、抗剪强度增大,与室内试验规律相一致。研究成果可为采用石灰改良分散性土的工程提供理论支撑及参考。

Abstract

The soil used for the core dam of a reservoir in Xinjiang is dispersive soil. To treat this soil, 1% lime is added. To ensure project quality and achieve uniform mixing, a ZB05 cold recycling paver was employed, with mixing cycles set at 1, 2, 4, and 6, respectively. The SG-6 multifunctional direct-reading calcium meter was used for rapid and random detection of soil lime content to control the uniformity of the lime-treated soil. The influence of aging time on the compaction characteristics of the improved soil was also investigated. In the field construction environment, the impact of curing age on the physical and mechanical properties of the improved soil was evaluated through indoor compression and direct shear tests. Results show that, when rolled 8 times with a spread thickness of 30 and 35 cm, the settlement of the soil material stabilizes, and the dry density after rolling meets the requirement of ≥1.73 g/cm3, with a compaction degree of ≥99%. When the mixing cycle is 6, the uniformity of the lime mixing stabilizes, with a coefficient of variation ( Cv ) of 0.28. As the aging time increases, the lime-treated soil becomes less favorable for rolling. To maintain a compaction degree of 99%, the aging time should not exceed 9 hours. The compressibility and shear strength of the improved soil are significantly influenced by curing age. As curing age increases, the compressibility of the lime-treated soil decreases, whereas shear strength increases, consistent with laboratory test results.

关键词

分散性土 / 碾压工艺 / 拌和工艺 / 陈化时间 / 龄期

Key words

dispersive soil / rolling process / mixing process / aging time / curing age

引用本文

导出引用
何建新, 高鹏展, 杨海华, . 石灰改良分散性土拌和工艺与压实特性[J]. raybet体育在线 院报. 2025, 42(3): 118-124 https://doi.org/10.11988/ckyyb.20231188
HE Jian-xin, GAO Peng-zhan, YANG Hai-hua, et al. Mixing Technique and Compaction Characteristics of Lime-improved Dispersive Soil[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(3): 118-124 https://doi.org/10.11988/ckyyb.20231188
中图分类号: TV443 (防渗土料)   

参考文献

[1]
汪恩良, 李宇昂, 任志凤, 等. 基于扫描电镜和核磁共振技术的分散性土改良微观结构性变化研究[J]. 岩土工程学报, 2023, 45(6):1123-1132.
(WANG En-liang, Li Yu-ang, REN Zhi-feng, et al. Microstructural Change of Improved Dispersive Soil Based on Scanning Electron Microscope and Nuclear Magnetic Resonance Technology.[J] Chinese Journal of Geotechnical Engineering, 2023, 45(6):1123-1132. (in Chinese))
[2]
杨小川. 寒冷地区改性分散性土冲刷试验研究[D]. 西安: 西安建筑科技大学, 2019.
(YANG Xiao-chuan. Experimental Study on Scouring of Modified Dispersive Clay in Cold Region[D]. Xi’an: Xi’an University of Architecture and Technology, 2019. (in Chinese))
[3]
王观平. 分散性粘土与水利工程[M]. 北京: 中国水利水电出版社, 1999.
(WANG Guan-ping. Dispersed Clay and Water Conservancy Project[M]. Beijing: China Water & Power Press, 1999. (in Chinese))
[4]
刘杰, 杨玉婳, 姚海林, 等. 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(增刊1):163-170.
(LIU Jie, YANG Yu-hua, YAO Hai-lin, et al. Experimental Study on Treatment of Dispersed Clay Based on Different Modification Methods[J]. Rock and Soil Mechanics, 2019, 41(Supp.1):163-170. (in Chinese))
[5]
汪涛. 沙旋沟淤地坝筑坝土料的分散性鉴定及改性试验研究[D]. 杨凌: 西北农林科技大学, 2016.
(WANG Tao. Dispersion Identification and Modification Test of Soil Materials for Shaxuangou Warping Dam[D]. Yangling: Northwest A & F University, 2016. (in Chinese))
[6]
严应佳, 樊恒辉, 杨秀娟. 粉煤灰改性分散性土的工程特性试验研究[J]. 水力发电学报, 2017, 36(4): 86-94.
(YAN Ying-jia, FAN Heng-hui, YANG Xiu-juan. Engineering Characteristics of Dispersive Clay Modified with Fly Ash[J]. Journal of Hydroelectric Engineering, 2017, 36(4): 86-94. (in Chinese))
[7]
CONSOLI N C, SAMANIEGO R A Q, VILLALBA N M K. Stiffness of Dispersive Clay-Lime Blends[J]. Journal of Materials in Civil Engineering, 2016, 28(11): 04016124.
[8]
李华銮, 高培法, 穆乃敏, 等. 分散性土的鉴别及改性试验[J]. 山东大学学报(工学版), 2010, 40(4):92-95.
(LI Hua-luan, GAO Pei-fa, MU Nai-min, et al. Identification and Modification of Dispersed Soil[J]. Journal of Shandong University (Engineering and Technology Edition), 2010, 40(4):92-95. (in Chinese))
[9]
邓铭江, 周小兵, 万金平, 等. “635” 水利枢纽大坝心墙防渗土料分散性鉴定及改性试验研究[J]. 岩土工程学报, 2000, 22(6): 673-677.
(DENG Ming-jiang, ZHOU Xiao-bing, WAN Jin-ping, et al. Dispersion Appraisal and Modification Analyses of the Impervious Soil Materials for the Core Wall of the Dam of “635” Water Control Project[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 673-677. (in Chinese))
[10]
陈劲松, 顾缬琴, 盛小涛, 等. 大坝心墙料分散性及处理措施试验研究[J]. raybet体育在线 院报, 2016, 33(4): 144-150.
摘要
分散性黏土是一种特殊土,具有易被水冲蚀的特性。随着国内外土石坝发展迅速,心墙土的选择范围也不断扩大,能否选用分散性黏土作为心墙填料以及分散性黏土在反滤层保护下防渗效果如何,是工程设计中十分关心的问题。针对某水利枢纽2个料场的心墙料取样开展了与分散性有关的试验研究,通过针孔、碎块、孔隙水溶液及双比重计4种室内试验鉴定方法对心墙料的分散性进行判定。对分散性心墙料掺加不同比例的水泥或生石灰进行了改性,并对改性前后的心墙料渗透特性和反滤保护措施效果进行对比研究。试验成果表明料场的部分心墙料具有分散性;2个料场的土料在水泥掺量3%或者生石灰掺量3%~5%的情况下,基本可以消除土料的分散性;经过掺水泥或石灰等方式改性的心墙料比未掺改性材料的心墙料能承受的水力比降更高;在合适的反滤料保护下,分散性黏土能承受较高的水力比降,在裂缝等不利情况下有良好的自愈能力。
(CHEN Jin-song, GU Xie-qin, SHENG Xiao-tao, et al. Experimental Research on the Dispersibility of Core Material and Treatment Measures[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(4): 144-150. (in Chinese))
Dispersive clay is a special soil which can be washed out by water easily. With the development of earth and rockfill dam, the range of choosing core material expands correspondingly. Dispersive clay as core material and its seepage-proofing effect under the protection of filters are issues concerned in engineering design. In this research we collected core materials from two stock grounds of a hydro-junction and conducted laboratory tests using pinhole, fragment, pore water solution and double areometers to determine the dispersibility of core material. By mixing different ratios of cement or quick lime, we modified the dispersibility of the core materials and compared their permeability and filter protection effect before and after modification. Results reveal that by mixing 3% of cement or 3%-5% of quick lime we can eliminate the dispersibility of the core materials from the two sites. Moreover, core material modified by cement or quick lime could bear higher hydraulic gradient than non-modified material does. Under the protection of proper filtration material, dispersive clay could bear high gradient, and has good self-healing ability in the presence of fissures.<br/><br/>
[11]
樊恒辉, 孔令伟, 李洪良, 等. 马家树水库大坝防渗土料分散性判别和改性试验[J]. 岩土力学, 2010, 31(1): 193-198, 222.
(FAN Heng-hui, KONG Ling-wei, LI Hong-liang, et al. Study of Dispersive Identification and Treatment with Lime of Dam Soil in Majiushu Reservoir[J]. Rock and Soil Mechanics, 2010, 31(1):193-198, 222. (in Chinese))
[12]
BELL F G. Lime Stabilization of Clay Minerals and Soils[J]. Engineering Geology, 1996, 42(4): 223-237.
[13]
马秀媛, 徐又建. 青岛市官路水库分散性粘土工程特性及改性试验研究[J]. 岩土工程学报, 2000, 22(4): 441-444.
(MA Xiu-yuan, XU You-jian. Behavior of Dispersive Clay and Its Limestabilized Test in Guanlu Reservoir in Qingdao[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 441-444. (in Chinese))
[14]
杨小川, 苏安双, 王远明, 等. 分散性土改性效果干湿循环模型试验研究[J]. 水利水电技术, 2019, 50(2): 202-207.
(YANG Xiao-chuan, SU An-shuang, WANG Yuan-ming, et al. Study on Dry-wet Cycle Model Test of Dispersion Soil Modification Effect[J]. Water Resources and Hydropower Engineering, 2019, 50(2): 202-207. (in Chinese))
[15]
边加敏, 蒋玲, 王保田. 石灰改良膨胀土路基施工控制参数[J]. 长安大学学报(自然科学版), 2014, 34(2):51-58.
(BIAN Jia-min, JIANG Ling, WANG Bao-tian. Construction Control Parameters of Lime Improved Expansive Soil Subgrade[J]. Journal of Chang’an University (Natural Science Edition), 2014, 34(2):51-58. (in Chinese))
[16]
刘鸣, 程永辉, 童军. 南水北调中线工程膨胀土边坡处理效果及评价[J]. raybet体育在线 院报, 2016, 33(3):104-110.
摘要
为研究膨胀土边坡在膨胀作用下的破坏形式及边坡处理方案,针对不同工况进行了现场模拟试验与监测。系统总结了膨胀土边坡处理的施工技术;从边坡变形、含水率变化2个方面,全面分析了水泥土改性、土工格栅加筋、土工膜封闭、土工袋填筑4个工况的边坡处理效果。结果表明:水泥改性土(换填非膨胀黏性土)处理效果最好;土工格栅加筋主要存在施工工艺较为复杂的问题;土工袋填筑存在压实度难以控制的问题;土工膜封闭主要由于没有压重处理,效果最差。最后总结并提出了膨胀土边坡处理原则。
(LIU Ming, CHENG Yong-hui, TONG Jun. Effectiveness of Treatment Measures for Expansive Soil Slope in the Middle Route of the South-to-north Water Transfer Project[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(3): 104-110. (in Chinese))
According to the failure mode of expansive soil slope induced by expansion effect and the monitoring result of on-site simulation test, we summarize the techniques of expansive soil slope treatment. Furthermore, we compare and analyse the effectiveness of four treatment measures (cement soil modification, geogrid reinforcement, geomembrane, and geotextile bags filling) by evaluating the slope deformation and the variation of moisture content. Results reveal that cement soil (replacement of non-expansive clayey soil) has the best performance, whereas geogrid reinforcement is featured with complex techniques, and the compaction degree of geotextile bags filling is hard to control. Finally, we put forward the principles of expansive soil slope treatment.
[17]
罗喆, 周航, 吴涛, 等. 新疆某水库黏土料填筑碾压参数研究[J]. 湖南水利水电, 2023(4):64-66.
(LUO Zhe, ZHOU Hang, WU Tao, et al. Study on Rolling Parameters of Clay Filling in a Reservoir in Xinjiang[J]. Hunan Hydro & Power, 2023(4): 64-66. (in Chinese))
[18]
娄中. 浅议膨胀土路基路拌法施工技术的应用[J]. 中国标准化, 2017(6): 185, 187.
(LOU Zhong. Discussion on the Application of Road Mixing Construction Technology of Expansive Soil Road Foundation[J]. China Standardization, 2017(6): 185, 187. (in Chinese))
[19]
JTG E51—2009, 公路工程无机结合料稳定材料试验规程[S]. 北京: 人民交通出版社, 2009.
(JTG E51—2009, Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering: Beijing: China Communications Press, 2009. (in Chinese))
[20]
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. Hoboken: Wiley, 2005.
[21]
赵红华, 龚壁卫, 赵春吉, 等. 石灰加固膨胀土机理研究综述和展望[J]. raybet体育在线 院报, 2015, 32(4):65-70.
(ZHAO Hong-hua, GONG Bi-wei, ZHAO Chun-ji, et al. A Review and Prospect on the Mechanism of Expansive Soil Stabilized by Lime[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(4): 65-70. (in Chinese))
Previous research results on the mechanism of expansive soil stabilized by lime are summarized. It is clear that cation exchange is the first reaction when lime is added into expansive soil, followed by flocculation and agglomeration. These reactions change the soil’s properties quickly. Pozzolanic reaction of lime and soil is a long-term process, which helps increase the strength of expansive clay. Carbonation and crystallization also contributes to the strength increase of expansive soil. Diffusion and cementation are the causes of interior changes in the soil. Microstructure and mineralogy changes are the internal causes of stabilization of expansive soils. Moreover, analysis on the quantitative cation exchange, quantitative microstructure change, and soil suction change of expansive soil during lime treatment would be new research focus. These investigations will further reveal the fundamental mechanism of expansive soil stabilized by lime. The review also indicates that the possible environmental pollution caused by lime stabilization can be ignored.
[22]
PRUSINSKI J R, BHATTACHARJA S. Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1652(1): 215-227.

基金

新疆维吾尔自治区自然科学基金项目(2022D01A200)
兵团堤防工程安全与防灾重点实验室资助项目

编辑: 占学军
PDF(5476 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map