PDF(7443 KB)
PDF(7443 KB)
PDF(7443 KB)
面向三峡水库的水面蒸发模型
Water Surface Evaporation Model for the Three Gorges Reservoir
针对目前水面蒸发模型对三峡水库狭长带状河道型的特点考虑不足的问题,分析三峡水库巴东站的水面蒸发变化规律,充分考虑饱和水汽压差、相对湿度、风速和水汽温差共4个主要因素对水面蒸发的影响,引入不同风速量级下的水汽温差函数,建立适合于三峡水库的水面蒸发模型。结果表明:面向三峡水库水面蒸发模型能准确模拟出三峡水库的水面蒸发量,模型在率定期的模拟效果最优,相比于其他传统经验模型,纳什效率系数NSE由0.31提高至0.75,与实测值的误差大幅度下降。同时模型模拟的蒸发量经折算后与三峡水库其他5处站点的实测值能较好吻合,验证了模型的精确性和可靠性,为三峡水库水资源合理利用与科学管理提供了技术支持。
This study aims to address the issue that existing water surface evaporation models do not account for the unique characteristics of the narrow and long channel type of the Three Gorges Reservoir. By analyzing water surface evaporation data from the Badong station in the Three Gorges Reservoir, we develop a water surface evaporation model specifically tailored for the Three Gorges Reservoir by introducing functions for water vapor temperature difference under different wind speeds in consideration of the influences of four primary factors: saturated water vapor pressure difference, relative humidity, wind speed, and vapor temperature difference. Results demonstrate that the proposed model accurately simulates the reservoir’s water surface evaporation, particularly during the calibration period, achieving a Nash efficiency coefficient (NSE) of 0.75, a significant improvement from 0.31 obtained with other traditional empirical models. The model’s simulated evaporation values closely match measurements from five additional stations in the reservoir, validating its accuracy and reliability. This model provides valuable technical support for the rational utilization and scientific management of water resources in the Three Gorges Reservoir.
水面蒸发模型 / 机理分析 / 水汽温差函数 / 精度评估 / 水资源合理利用 / 三峡水库
water surface evaporation model / mechanism analysis / water vapor temperature difference function / accuracy evaluation / rational utilization of water resources / Three Gorges Reservoir
| [1] |
白鹏, 刘小莽, 刘璐, 等. 丹江口水库水面蒸发变化特征及影响因素[J]. 南水北调与水利科技(中英文), 2022, 20(4):643-649.
|
| [2] |
|
| [3] |
徐之华, 黄健民. 长江三峡库区气候特征与生态环境[J]. 四川气象, 2002, 22(3): 22-24.
|
| [4] |
李祖忠, 张旭东, 江聪, 等. 基于Landsat影像的近40年来(1982—2021年)三峡库区水面面积及其蒸发损失变化[J]. 湖泊科学, 2023, 35(5): 1822-1831.
|
| [5] |
张祎, 刘杨, 张释今. 三峡水库近20年水面蒸发量分布特征及趋势分析[J]. 水文, 2018, 38(3): 90-96.
|
| [6] |
王玉涛, 林涛涛. 三峡水库水面蒸发量估算[J]. 水利水电快报, 2022, 43(12): 27-30,48.
|
| [7] |
任实, 刘亮. 三峡水库水面蒸发特性初步研究[C]//中国水利学会.2019学术年会论文集第一分册. 北京: 中国水利水电出版社, 2019:695-703.
(
|
| [8] |
|
| [9] |
濮培民. 水面蒸发与散热系数公式研究(二)[J]. 湖泊科学, 1994, 6(3):201-210.
|
| [10] |
陈惠泉, 毛世民. 水面蒸发系数全国通用公式的验证[J]. 水科学进展, 1995, 6(2):116-120.
|
| [11] |
李万义. 适用于全国范围的水面蒸发量计算模型的研究[J]. 水文, 2000, 20(4): 13-17,63.
|
| [12] |
闵骞. 水面蒸发计算模型研究[J]. 水利水电科技进展, 2003, 23(1): 41-44, 70.
|
| [13] |
王雨潇, 孙营营, 张天宇, 等. 1998—2020年三峡库区最大1 h降水的时空变化特征[J]. 河海大学学报(自然科学版), 2023, 51(1):10-18.
|
| [14] |
|
| [15] |
毛海涛, 王正成, 王晓菊, 等. 北疆平原水库水面蒸发模型的建立与关键参数确定[J]. 农业工程学报, 2018, 34(6): 129-136.
|
| [16] |
崔逸凡, 刘元波. 湖泊蒸发观测与计算方法研究进展[J]. 湖泊科学, 2023, 35(5): 1501-1517.
|
| [17] |
|
| [18] |
|
| [19] |
杨肖丽, 崔周宇, 任立良, 等. 1966—2015年长江流域水文干旱时空演变归因[J]. 水科学进展, 2023, 34(3):349-359.
|
| [20] |
|
| [21] |
白倩倩, 梁恩航, 王婷, 等. 洞庭湖表层水温变化特征及其对气候变化的响应[J]. 北京大学学报(自然科学版), 2022, 58(2): 345-353.
|
| [22] |
|
/
| 〈 |
|
〉 |