基于渗流-应力耦合的近水平层状裂隙岩体渗透张量估算

王俊智, 陈艳国, 张海丰, 万伟锋

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (2) : 115-121.

PDF(6037 KB)
PDF(6037 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (2) : 115-121. DOI: 10.11988/ckyyb.20231110
岩土工程

基于渗流-应力耦合的近水平层状裂隙岩体渗透张量估算

作者信息 +

Estimation of Hydraulic Conductivity Tensor of Nearly-horizontal Stratified Fractured Rock Mass Based on Seepage-Stress Coupling Theory

Author information +
文章历史 +

摘要

定量评价裂隙岩体的渗透能力及各向异性特征是水利水电工程地质勘察的重要内容,可为防渗帷幕设计、基坑降排水设计、水工隧洞突涌水预测等提供技术支撑。为了探究近水平层状裂隙岩体的渗透能力,介绍了一种基于“渗流-应力”耦合理论的渗透张量估算方法。该方法联合使用常规垂直钻孔压水试验、水平定向钻孔压水试验与岩体应力测试,通过建立“结构面法向应力-结构面张开度”负指数函数关系,估算结构面的等效水力张开度,计算岩体的渗透张量。该方法在黄河古贤水利枢纽工程中进行了实际应用,分析了坝址区岩体渗透参数各向异性的发育特征。结果表明,相较于常规垂直孔压水试验,所提方法更能表征岩体的渗透能力和各向异性渗透特征,其换算得到的综合渗透系数约是常规垂直孔压水试验的15倍。研究成果可为渗控工程设计提供科学指导。

Abstract

Quantitative evaluation of the permeability and anisotropy of fractured rock masses is crucial for engineering geological investigations in water conservancy and hydropower projects. Such evaluations provide essential technical support for designing anti-seepage curtains, foundation pit drainage systems, and predicting water inrush in hydraulic tunnels. In this paper, we introduce a method for estimating the hydraulic conductivity tensor of nearly horizontally layered fractured rock masses based on “seepage-stress” coupling theory. This method integrates conventional vertical borehole water pressure tests, horizontal directional borehole water pressure tests, and rock mass stress tests. By establishing a negative exponential function relationship between normal stress and aperture, the equivalent hydraulic aperture of the structural plane is estimated, and the hydraulic conductivity tensor of the rock mass is calculated. This method has been applied to the Guxian water resources management project on Yellow River as a case study. The anisotropy of the hydraulic conductivity in the dam site area was analyzed. Results demonstrate that, compared with conventional vertical borehole water pressure tests, the proposed method better characterizes the permeability and anisotropic properties of the rock masses. Specifically, the comprehensive permeability coefficient obtained using the proposed method is approximately 15 times that of conventional tests, providing valuable scientific guidance for the design of seepage control engineering.

关键词

裂隙岩体 / 渗透张量 / 定向压水试验 / 地应力测试 / 黄河古贤水利枢纽工程

Key words

fractured rock mass / hydraulic conductivity tensor / directional water pressure test / in-situ stress test / Yellow River Guxian water resources management project

引用本文

导出引用
王俊智, 陈艳国, 张海丰, . 基于渗流-应力耦合的近水平层状裂隙岩体渗透张量估算[J]. raybet体育在线 院报. 2025, 42(2): 115-121 https://doi.org/10.11988/ckyyb.20231110
WANG Jun-zhi, CHEN Yan-guo, ZHANG Hai-feng, et al. Estimation of Hydraulic Conductivity Tensor of Nearly-horizontal Stratified Fractured Rock Mass Based on Seepage-Stress Coupling Theory[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(2): 115-121 https://doi.org/10.11988/ckyyb.20231110
中图分类号: TV543 (灌浆和防渗墙工程)   

参考文献

[1]
张有天. 岩石水力学与工程[M]. 北京: 中国水利水电出版社, 2005.
( ZHANG You-tian. Rock Hydraulics and Engineering[M]. Beijing: China Water & Power Press, 2005. (in Chinese))
[2]
田开铭, 万力. 各向异性裂隙介质渗透性的研究与评价[M]. 北京: 学苑出版社, 1989.
( TIAN Kai-ming, WAN Li. Research and Evaluation of Permeability in Anisotropic Fractured Media[M]. Beijing: Xueyuan Press, 1989. (in Chinese))
[3]
仵彦卿, 张倬元. 岩体水力学导论[M]. 成都: 西南交通大学出版社, 1995.
( WU Yan-qing, ZHANG Zhuo-yuan. An Introduction to Rock Mass Hydraulics[M]. Chengdu: Southwest Jiaotong University Press, 1995. (in Chinese))
[4]
HOULSBY A C. Routine Interpretation of the Lugeon Water-test[J]. Quarterly Journal of Engineering Geology, 1976, 9(4): 303-313.
[5]
蒋小伟, 万力, 胡晓农. 基于压水试验数据的砂泥岩裂隙岩体渗透结构分析[J]. 自然科学进展, 2008, 18(3):355-360.
JIANG Xiao-wei, WAN LI, HU Xiao-nong. Variation of Permeability with Depth and Lithology in a Formation of Fractured Sandstone-mudstone Media[J]. Advances in Water Science, 2008, 18(3):355-360. (in Chinese))
[6]
王俊智, 李清波, 王贵军, 等. 近水平层状坝基岩体渗透结构及其工程意义[J]. 水文地质工程地质, 2022, 49(1): 12-19.
WANG Jun-zhi, LI Qing-bo, WANG Gui-jun, et al. Permeability Structure of the Horizontally-stratified Dam Foundation Rock Mass and Its Engineering Significance[J]. Hydrogeology and Engineering Geology, 2022, 49(1): 12-19. (in Chinese))
[7]
纪成亮, 李晓昭, 王驹, 等. 裂隙岩体渗透系数确定方法研究[J]. 工程地质学报, 2010, 18(2): 235-240.
JI Cheng-liang, LI Xiao-zhao, WANG Ju, et al. Discrete Fracture Network Model for Hydraulic Conductivity of Fractured Rock Mass[J]. Journal of Engineering Geology, 2010, 18(2): 235-240. (in Chinese))
[8]
王新峰, 梁杏, 孙蓉琳, 等. 一种层状岩体压水试验成果计算分析渗透性的新方法[J]. 水文地质工程地质, 2011, 38(1): 46-52.
WANG Xin-feng, LIANG Xing, SUN Rong-lin, et al. A New Method of Hydraulic Conductivity Calculating and Analysis by Water Pressure Test in Layered Rock[J]. Hydrogeology and Engineering Geology, 2011, 38(1): 46-52. (in Chinese))
[9]
LOUIS C. Rock Hydraulics in Rock Mechanics[M]. New York: Elsevier Science, 1974.
[10]
谷德振. 岩体工程地质力学基础[M]. 北京: 科学出版社, 1979.
( GU De-zhen. Geomechanics Foundation for Rock Mass Engineering[M]. Beijing: Science Press, 1979. (in Chinese))
[11]
GOODMAN R E. The Mechanical Properties of Joints[C]//ISRM.Proceedings of 3rd Congress ISRM, Denver, April 1,1974: 1-7.
[12]
BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of Rock Joint Deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1983, 20(6): 249-268.
[13]
孙广忠. 岩体结构力学[M]. 北京: 科学出版社, 1988.
( SUN Guang-zhong. Rock Mass Structural Mechanics[M]. Beijing: Science Press, 1988. (in Chinese))
[14]
李四光. 地质力学概论[M]. 北京: 科学出版社, 1973.
( LI Si-guang. Introduction to Geomechanics[M]. Beijing: Science Press, 1973. (in Chinese))
[15]
李智毅, 杨裕云. 工程地质学概论[M]. 武汉: 中国地质大学出版社, 1994.
( LI Zhi-yi, YANG Yu-yun. Introduction to Engineering Geology[M]. Wuhan: China University of Geosciences Press, 1994. (in Chinese))
[16]
王俊智, 杜朋召, 牛兆轩. 基于K-means聚类方法和I Index聚类有效性检验指标的岩体结构面自动分组及应用[J]. raybet体育在线 院报, 2018, 35(9): 109-113, 120.
摘要
岩体结构面产状数据的统计分组是工程地质、水文地质工作中基础但十分重要的环节。常用的倾向、走向玫瑰花图和极点等密度图人为主观因素大,需借助合适的数学手段对结构面产状数据进行客观划分。基于K-means聚类方法和I Index聚类有效性检验指标,提出了一种岩体结构面自动分组方法,并开发了岩体结构面自动分组程序RDAP。通过与经典文献进行对比,验证了所提分组方法的可靠性。最后,以某工程为例,使用RDAP对实测涌水裂隙资料进行了预处理,初步计算了灌浆钻孔的最佳方位,为工程涌水的防治提供了依据。
WANG Jun-zhi, DU Peng-zhao, NIU Zhao-xuan. An Auto-classification of Rockmass Discontinuities Based on K-means Cluster Analysis and Cluster Validity Index I: Research and Application[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 109-113, 120. (in Chinese))
Classifying the orientations of rock discontinuities is a fundamental but critically important routine of engineering geology and hydrogeology. The commonly-used rose diagrams of dip directions and strikes and poles to orientations are subjective. It is appreciated to resort to mathematical approaches. In this paper, an automatic grouping method is proposed based on the algorithms of <i>K</i>-means cluster analysis and cluster validity index <i>I</i>, and a Rock Discontinuities Auto-classification Program (RDAP) is developed. By comparing with Shanley and Mahtab’s result (1976), the reliability of the new grouping method or RDAP is verified. In the end, RDAP is used to cluster the gushing fractures to aid in the selection of the optimum position of grouting drillings of a project, which provides a basis for the prevention and control of water gushing.
[17]
SHANLEY R J, MAHTAB M A. Delineation and Analysis of Clusters in Orientation Data[J]. Journal of the International Association for Mathematical Geology, 1976, 8(1): 9-23.
[18]
JAEGER J C, COOK N G, ZIMMERMAN R. Fundamentals of Rock Mechanics[M]. New York: John Wiley & Sons, 2019.
[19]
SNOW D T. Anisotropic Permeability of Fractured Media[J]. Water Resources Research, 1969, 5(6):1273-1289.

基金

国家自然科学基金青年基金项目(41902245)
河南省重点研发与推广专项(232102320314)
黄河勘测规划设计研究院有限公司自主研发项目(2021-KY48)

编辑: 占学军
PDF(6037 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map