砂土-钢板界面剪切试验与PFC细观模拟分析

李永辉, 王海, 牛恒宇, 蒋晓天

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (2) : 107-114.

PDF(9178 KB)
PDF(9178 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (2) : 107-114. DOI: 10.11988/ckyyb.20230994
岩土工程

砂土-钢板界面剪切试验与PFC细观模拟分析

作者信息 +

Shear Test and PFC Meso-simulation Analysis of Sand-Steel Interface

Author information +
文章历史 +

摘要

针对砂土-钢板接触界面,通过大型界面剪切试验和PFC细观模拟,探究法向应力和界面粗糙度对砂土-钢板接触界面剪切力学特性的影响及内在机理。结果表明:界面粗糙度增大,界面摩擦角随之增大,界面剪切强度、残余强度提高,砂土剪缩、剪胀性显著;法向应力增大,界面剪切强度、残余强度提高,砂土剪缩性提升,剪胀性降低;界面剪切过程中砂土颗粒向剪切方向移动聚集,强接触力链合并,数量减少,传力性能提升;界面粗糙度通过改变钢板槽内砂土颗粒的数量使其与钢板的接触面积发生变化,从而对界面剪切力学特性产生影响;法向应力影响砂土与钢板接触的密实度和作用力,使得其界面剪切力学性状产生变化。

Abstract

This study investigates the influence of normal stress and interfacial roughness on the shear mechanical properties of sand-steel plate contact interface and explores the underlying mechanisms through large-scale interface shear tests and PFC mesoscopic simulations. The findings indicate that increased interfacial roughness leads to a higher interfacial friction angle, enhanced interfacial shear strength and residual strength, and more pronounced shear shrinkage and dilatancy of the sand. As normal stress increases, interfacial shear strength and residual strength improve, shear shrinkage of the sand increases, and dilatancy decreases. During the shear process, sand particles move and aggregate in the shear direction, resulting in the merging of strong contact force chains, with a decrease in their numbers but improved force transmission performance. The interfacial roughness affects the contact area between sand particles and the steel plate by altering the number of sand particles in the steel plate grooves, thereby influencing the interface’s shear mechanical properties. Normal stress affects the compactness and contact force between sand and steel plate, leading to changes in the interface’s shear mechanical properties.

关键词

砂土-钢板接触界面 / 界面剪切试验 / PFC / 细观模拟 / 界面粗糙度 / 法向应力

Key words

sand-steel plate contact interface / interface shear test / PFC / mesoscopic simulation / interface roughness / normal stress

引用本文

导出引用
李永辉, 王海, 牛恒宇, . 砂土-钢板界面剪切试验与PFC细观模拟分析[J]. raybet体育在线 院报. 2025, 42(2): 107-114 https://doi.org/10.11988/ckyyb.20230994
LI Yong-hui, WANG Hai, NIU Heng-yu, et al. Shear Test and PFC Meso-simulation Analysis of Sand-Steel Interface[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(2): 107-114 https://doi.org/10.11988/ckyyb.20230994
中图分类号: TU411 (实验室试验(室内土工试验))   

参考文献

[1]
吕海波, 蒋代苹, 柴源. 胶结钙质砂与钢界面剪切力学特性的试验研究[J]. 实验力学, 2022, 37(4): 497-506.
Hai-bo, JIANG Dai-ping, CHAI Yuan. Experimental Study on Shear Mechanical Characteristics of Cemented Calcareous Sand and Steel Surfaces[J]. Journal of Experimental Mechanics, 2022, 37(4): 497-506. (in Chinese))
[2]
KOU H L, DIAO W Z, ZHANG W C, et al. Experimental Study of Interface Shearing between Calcareous Sand and Steel Plate Considering Surface Roughness and Particle Size[J]. Applied Ocean Research, 2021, 107: 102490.
[3]
郭聚坤, 雷胜友, 王瑞, 等. 结构物-标准砂界面剪切机理试验研究[J]. 地下空间与工程学报, 2020, 16(3): 722-733.
摘要
桩基表面粗糙程度与砂粒径大小对砂土层桩侧摩阻力有显著影响。本文利用改装的室内直剪仪开展了不同粗糙界面的木板、钢板、混凝土板与北京标准砂间的直剪试验,研究界面剪切应力剪切位移关系、界面抗剪强度构成和界面摩擦角变化规律。结果表明:剪切应力位移关系可用对数幂函数模型拟合,硬化阶段采用对数模型,软化阶段采用幂函数模型,模型峰值剪切应力与试验峰值剪切应力的比值集中在0.92~1.02之间;峰值剪切应力与平均灌砂深度呈正相关关系,其从未刻纹路的界面Ⅰ到刻有纹路的界面Ⅱ增加值最大;刻有纹路的界面抗剪强度由未刻纹路区域、纹路棱角和纹路内的砂三部分提供,未刻纹路区域提供的抗剪强度最大,纹路棱角次之,纹路内的砂最小;木、钢和混凝土与标准砂的界面摩擦角分别集中在11°~23°、14°~23°和22°~27°范围内。研究成果可为砂土层桩侧摩阻力估计提供试验参考。
GUO Ju-kun, LEI Sheng-you, WANG Rui, et al. Study on Interface Shear Mechanism between Structures and Standard Sand[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(3): 722-733. (in Chinese))
Surface roughness of pile foundation and particle size of sand play an important role in the shaft resistance of pile in sand strata.The interface shear test of standard sand with wood plate,steel plate and concrete plate were performed using an improved direct shear apparatus to investigate the interface shear stress-shear displacement curves,composition of the interface shear strength and interface friction angle.Test results indicated that the shear stress-displacement relationship can be fitted by the logarithmic-power function model.Logarithmic model is used in hardening stage and power function model is used in softening stage.The ratio between the peak shear stress and the peak shear stress of the model ranges from 0.92 to 1.02.The peak shear stress increases with average sand filling depth,and the most increase of the peak shear stress is found from interface I of without lines to interface II of with lines.The shear strength of interface with engraved lines is provided by the region of without lines,the grain edge and the sand in the grain.The area without lines is the largest,followed by the grain edge,and the sand in the grain is the smallest.The interfacial friction angle of wood,steel and concrete with standard sand ranges from 11 to 23°,14 to 23°,22 to 27°,respectively.The research results can provide experimental reference for shaft resistance estimation in sand strata.
[4]
杨明辉, 王文筱, 邓波. 非饱和砂土-混凝土界面剪切强度试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 409-418.
YANG Ming-hui, WANG Wen-xiao, DENG Bo. Experimental Study on the Shear Strength of Unsaturated Sandy Soil-concrete Interfaces[J]. Journal of Railway Science and Engineering, 2022, 19(2): 409-418. (in Chinese))
[5]
刘飞禹, 符军, 王军, 等. 橡胶掺量对格栅-橡胶砂界面宏细观剪切特性影响[J]. 岩土工程学报, 2022, 44(6): 1006-1015.
LIU Fei-yu, FU Jun, WANG Jun, et al. Effects of Rubber Content on Macro-and Meso-scopic Shear Characteristics of Geogrid-rubber Sand Interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1006-1015. (in Chinese))
[6]
张利阳, 易富, 李俊元, 等. 土工织物加筋尾矿砂界面力学特性试验研究[J]. raybet体育在线 院报, 2020, 37(5):145-150,156.
摘要
为研究土工织物加筋尾矿砂界面力学特性,在不同的尾矿砂含水率、试验拉拔速率和竖向压强下开展一系列土工布及土工格栅的拉拔试验。比较相同条件下的土工格栅与土工布拉拔试验结果可知:土工布对细粒尾矿砂的加筋效果优于土工格栅的加筋效果,竖向压强较大时两者的拉拔力峰值差值增大;随尾矿砂含水率增加,界面剪应力峰值明显减小,界面剪应力峰值在含水率1.2%时比含水率8.4%时增加50%以上,表观黏聚力先增加后减小,在最优含水率附近时达到最大,界面摩擦角先快速减小后缓慢减小;随试验拉拔速率增加,界面剪应力峰值缓慢增加,表观黏聚力先增加后减小,界面摩擦角先减小后增加;各工况下剪应力峰值均随竖向压强的增大而增大。研究结果可为土工织物加筋尾矿坝工程设计提供参考。
ZHANG Li-yang, YI Fu, LI Jun-yuan, et al. Experimental Study on Interfacial Mechanical Properties of Geotextile-reinforced Tailings Sand[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(5):145- 150, 156. (in Chinese))
In order to study the mechanical properties of the reinforced interface between geotextile and fine tailings sand, we carried out pull-out tests on geogrid and geotextile under different test pull-out rates and different vertical pressures with varying moisture content of tailings sand. By comparing the pull-out test results of geogrid and geotextile under the same conditions, we conclude that geotextile has stronger reinforcement effect on fine tailings sand, and when vertical pressure is higher, the difference between the reinforcement effect on geotextile and geogrid is larger. With the rising of moisture content of tailings sand, the peak value of interfacial shear stress drops obviously: the interfacial shear stress at a moisture content of 1.2% is 1.5 times that when moisture content is 8.4%. Apparent cohesion increases at first but then decreases, with the peak value appearing near the optimal moisture content, whereas interfacial friction angle reduces rapidly at first and then declines slowly afterwards. With the augment of pull-out rate, the peak value of interfacial shear stress climbs slowly, and the apparent cohesion increases at first and then decreases, while the interfacial friction angle decreases at first and then increases. Under all working conditions, the peak value of shear stress increases linearly with the rising of vertical pressure.
[7]
VAFAEI N, FAKHARIAN K, SADREKARIMI A. Sand-sand and Sand-steel Interface Grain-scale Behavior under Shearing[J]. Transportation Geotechnics, 2021, 30: 100636.
[8]
李逸凡, 李大勇, 张雨坤. 颗粒级配和表面纹理对饱和砂-钢界面剪切强度的影响[J]. 岩土工程学报, 2024, 46(2):335-344.
LI Yi-fan, LI Da-yong, ZHANG Yu-kun. Effects of Grain Size Distribution and Surface Texture on Shear Behaviors at Saturated Sand-steel Interface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2):335-344. (in Chinese))
[9]
ZHANG P, DING S, FEI K. Research on Shear Behavior of Sand-Structure Interface Based on Monotonic and Cyclic Tests[J]. Applied Sciences, 2021, 11(24):11837.
[10]
ZHOU W, GUO Z, WANG L, et al. Sand-steel Interface Behaviour under Large-displacement and Cyclic Shear[J]. Soil Dynamics and Earthquake Engineering, 2020, 138:106352.
[11]
LIAO C, LIU S A, XIA X. Triaxial Shear Test for Strength Behavior of Saturated Sand-Steel Interface Based on Preformed Failure Plane[J]. Geotechnical Testing Journal, 2022, 45(5): 1005-1029.
[12]
XU L, WANG R, XU D, et al. Interface Shear Behavior of Geogrid-reinforced Calcareous Sand under Large-scale Monotonic Direct Shear[J]. International Journal of Geosynthetics and Ground Engineering, 2022, 8(5): 66.
[13]
ALDAEEF A A, RAYHANI M T. Pile-soil Interface Characteristics in Ice-poor Frozen Ground under Varying Exposure Temperature[J]. Cold Regions Science and Technology, 2021, 191: 103377.
[14]
KE L J, GAO Y F, LI D Y, et al. An Experimental Study on Monotonic Shear Behavior of the Interface between Fine Sea Sand and Steel[J]. International Journal of Geomechanics, 2023, 23(1): 06022034.
[15]
HAN F, GANJU E, SALGADO R, et al. Effects of Interface Roughness,Particle Geometry,and Gradation on the Sand-Steel Interface Friction Angle[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12):04018096.
[16]
NAMJOO A M, TOUFIGH M M, TOUFIGH V. Experimental Investigation of Interface Behaviour between Different Types of Sand and Carbon Fibre Polymer[J]. European Journal of Environmental and Civil Engineering, 2021, 25(13): 2317-2336.
[17]
SAMANTA M, PUNETHA P, SHARMA M. Effect of Roughness on Interface Shear Behavior of Sand with Steel and Concrete Surface[J]. Geomechanics and Engineering, 2018, 14(4): 387-398.
[18]
GU X, CHEN Y, HUANG M. Critical State Shear Behavior of the Soil-structure Interface Determined by Discrete Element Modeling[J]. Particuology, 2017, 35: 68-77.
[19]
刘飞禹, 孔剑捷, 姚嘉敏. 含石量和压实度对格栅-土石混合体界面剪切特性的影响[J]. 岩土工程学报, 2023, 45(5): 903-911.
LIU Fei-yu, KONG Jian-jie, YAO Jia-min. Effects of Rock Content and Degree of Compaction on Interface Shear Characteristics of Geogrid-soil-rock Mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. (in Chinese))
[20]
WANG P, YIN Z Y. Effect of Particle Breakage on the Behavior of Soil-structure Interface under Constant Normal Stiffness Condition with DEM[J]. Computers and Geotechnics, 2022, 147: 104766.
[21]
FENG S J, CHEN J N, CHEN H X, et al. Analysis of Sand-Woven Geotextile Interface Shear Behavior Using Discrete Element Method (DEM)[J]. Canadian Geotechnical Journal, 2020, 57(3): 433-447.
[22]
WANG Z, JACOBS F, ZIEGLER M. Visualization of Load Transfer Behaviour between Geogrid and Sand Using PFC2D[J]. Geotextiles and Geomembranes, 2014, 42(2):83-90.
[23]
YOSHIMI Y, KISHIDA T. A Ring Torsion Apparatus for Evaluating Friction between Soil and Metal Surfaces[J]. Geotechnical Testing Journal, 1981, 4(4): 145-152.
[24]
LI Y H, LV M F, GUO Y C, et al. Effects of the Soil Water Content and Relative Roughness on the Shear Strength of Silt and Steel Plate Interface[J]. Measurement, 2021, 174: 109003.
[25]
LI M, LI Y, ISLAM M R. Effects of Water Content and Interface Roughness on the Shear Strength of Silt-Cement Mortar Interface[J]. Soils and Foundations, 2021, 61(6): 1615-1629.
[26]
李浩, 罗强, 张正, 等. 砂雨法制备砂土地基模型控制要素试验研究[J]. 岩土工程学报, 2014, 36(10):1872-1878.
LI Hao, LUO Qiang, ZHANG Zheng, et al. Experimental Study on Control Element of Sand Pourer Preparation of Sand Foundation Model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1872-1878. (in Chinese))
[27]
孙其诚, 辛海丽, 刘建国, 等. 颗粒体系中的骨架及力链网络[J]. 岩土力学, 2009, 30(增刊1):83-87.
SUN Qi-cheng, XIN Hai-li, LIU Jian-guo, et al. Skeleton and Force Chain Network in Static Granular Material[J]. Rock and Soil Mechanics, 2009,30 (Supp. 1):83-87. (in Chinese))

基金

河南省自然科学基金面上项目(222300420555)
河南省重点研发专项(231111322100)

编辑: 罗 娟
PDF(9178 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map