河道淤泥气泡混合土物理性质的多因素影响及敏感性分析

刘增祥, 骆顺成, 陆勇, 娄玥玥

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (1) : 194-200.

PDF(1119 KB)
PDF(1119 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (1) : 194-200. DOI: 10.11988/ckyyb.20230898
岩土工程

河道淤泥气泡混合土物理性质的多因素影响及敏感性分析

作者信息 +

Multi-factor Influence and Sensitivity Analysis on Physical Properties of Foamed Mixture Lightweight Soil Using River Sludge

Author information +
文章历史 +

摘要

为掌握河道淤泥气泡混合土(FMLSS)的基本物理特性,以苏州市某河道清淤的淤泥质土为研究对象,通过优化的正交试验从物理特性角度研究不同因素对FMLSS密度和渗透性的影响,并采用极差分析方法对其敏感性进行分析。试验结果表明:FMLSS密度随气泡含量增加而显著减小,随水泥掺入量增加而显著增大,随含水率增加而显著减小,随养护龄期增长而微幅变化;FMLSS渗透系数随气泡含量增加而增大,随水泥掺入量增加而减小,随含水率增加呈现增大且变化趋势接近于成倍数的线性递增,随养护龄期增加呈现先快速减小后逐渐趋稳;各因素对密度和渗透系数影响的敏感性排序分别为:气泡含量>含水率>水泥掺入量>养护龄期、含水率>养护龄期>水泥掺入量>气泡含量;工程应用中应将气泡含量作为FMLSS密度和轻质性的主控要素,将含水率作为FMLSS渗透系数的主控要素。研究结果可为疏浚淤泥资源化利用和环境保护提供参考依据。

Abstract

To investigate the fundamental physical properties of foamed mixture lightweight soil using river sludge (FMLSS), river sludge collected from a river in Suzhou was used as the research material. An optimized orthogonal test was conducted to study the effects of various factors on the density and permeability of FMLSS, and sensitivity analysis was performed using the range analysis method. Results show that: 1) The density of FMLSS decreased significantly with increasing air foam content and water content, but increased significantly with increasing cement content, and changed slightly with increasing curing age. 2) The permeability coefficient of FMLSS increased with rising air foam content, reduced with increasing cement content, nearly multiplied with increasing water content in a linear manner, and plunged with extending curing age before gradually stabilizing. 3)Density was most sensitive to air foam content, followed by water content, cement content, and curing age in a descending order; permeability coefficient was most sensitive to water content, followed by curing age, cement content, and air foam content in a descending order. 4)In engineering applications, air foam content should be the primary control factor for density and lightweight properties of FMLSS, while water content should be the primary control factor for permeability coefficient. The research findings serve as valuable reference for the resource utilization of dredged silt and environmental protection.

关键词

河道淤泥气泡混合土 / 物理特性 / 密度 / 渗透系数 / 正交试验 / 敏感性分析

Key words

foamed mixture lightweight soil using river sludge / physical properties / density / permeability coefficient / orthogonal test / sensitivity analysis

引用本文

导出引用
刘增祥, 骆顺成, 陆勇, . 河道淤泥气泡混合土物理性质的多因素影响及敏感性分析[J]. raybet体育在线 院报. 2025, 42(1): 194-200 https://doi.org/10.11988/ckyyb.20230898
LIU Zeng-xiang, LUO Shun-cheng, LU Yong, et al. Multi-factor Influence and Sensitivity Analysis on Physical Properties of Foamed Mixture Lightweight Soil Using River Sludge[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 194-200 https://doi.org/10.11988/ckyyb.20230898
中图分类号: TU411 (实验室试验(室内土工试验))    X141 (环境地质学)   

参考文献

[1]
朱伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41,50.
(ZHU Wei, ZHANG Chun-lei, Liu Han-long, et al. The Status Quo of Dredged Spoils Utilization[J]. Environmental Science & Technology, 2002, 25(4): 39-41,50. (in Chinese))
[2]
顾欢达, 陈甦. 河道淤泥的流动化处理及其工程性质的试验研究[J]. 岩土工程学报, 2002, 24(1):108-111.
(GU Huan-da, CHEN Su. Engineering Properties of River Sludge and Its Stabilization[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 108-111. (in Chinese))
[3]
陈忠平, 王树林. 气泡混合轻质土及其应用综述[J]. 中外公路, 2003, 23(5):117-120.
(CHEN Zhong-ping, WANG Shu-lin. Review on Foamed Mixtuee Lightweight Soil and Its Application[J]. Journal of China & Foreign Highway, 2003, 23(5): 117-120. (in Chinese))
[4]
蔡力, 陈忠平, 吴立坚. 气泡混合轻质土的主要力学特性及应用综述[J]. 公路交通科技, 2005, 22(12):71-74.
(CAI Li, CHEN Zhong-ping, WU Li-jian. Foamed Cement Banking Mechanics and Its Application[J]. Journal of Highway and Transportation Research and Development, 2005, 22(12): 71-74. (in Chinese))
[5]
何国杰, 丁振洲, 郑颖人. 气泡混合轻质土的研制及其性能[J]. 地下空间与工程学报, 2009, 5(1):18-22.
摘要
起泡剂是制备气泡混合轻质土的关键,通过研制复配起泡剂,选用粘性土作为原料土,制作气泡混合轻质土并对其容重及强度性能进行试验研究。通过试验结果的综合分析,提出了该气泡混合轻质土容重及强度指标随各影响因素的变化规律。试验中所有制备试样的容重在0.591~1.124g/cm3之间、强度在300~800kPa之间变化,能够达到实际工程应用的要求。
(HE Guo-jie, DING Zhen-zhou, ZHENG Ying-ren. Preparation of Bubble Mixed Light Soil and Its Properties[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(1): 18-22. (in Chinese))

Foaming agent is the most important component to preparation of bubble mixed light soil.In this paper the bubble mixed light soil was prepared by composite foaming agent with clay soil as raw material and its unit weight and strength properties were tested.By analyzing trial data,it puts forward the regularities of variation of unit weight and strength vs.influence factors.It was discovered that for all trial data,the unit weight in range of 0.591~1.124g/cm3 and the strength in range of 300~800kPa,which can be feasible to engineering construction.

[6]
顾欢达, 顾熙. 河道淤泥的轻质化处理及其工程性质[J]. 环境科学与技术, 2010, 33(9):63-66.
(GU Huan-da, GU Xi. Air Foamed Lightweight Soil with River Sludge and Its Engineering Properties[J]. Environmental Science & Technology, 2010, 33(9): 63-66. (in Chinese))
[7]
顾欢达, 顾熙. 河道淤泥气泡混合轻质土的性质稳定性试验[J]. 北京工业大学学报, 2010, 36(4):469-474.
(GU Huan-da, GU Xi. Stability of Air Foamed Lightweight Soil Using River Sludge[J]. Journal of Beijing University of Technology, 2010, 36(4): 469-474. (in Chinese))
[8]
陈晨, 顾欢达, 陈冬青. 河道淤泥气泡混合土细观破坏机理模拟分析[J]. raybet体育在线 院报, 2017, 34(1):114-119,134.
摘要
河道淤泥气泡混合土是由固体土体和微孔组成非均质复合材料,微孔结构形状及分布特征是影响气泡混合土力学性质的主要因素。基于河道淤泥气泡混合土内部微孔分布的细观特征,利用物理力学及数值模拟试验方法,对河道淤泥气泡混合土的力学性质与微孔细观特征的相关性进行分析,以揭示河道淤泥气泡混合土的强度发挥及破坏机理。根据模拟计算及试验实测得到:大孔径微孔及微孔孔径分布的均匀性是影响气泡混合土力学性质的重要因素;其次,河道淤泥气泡混合土中的气泡掺入量、水泥掺入量也是影响河道淤泥气泡混合土力学性质的主要因素。
(CHEN Chen, GU Huan-da, CHEN Dong-qing. Simulation Analysis on Mesoscopic Failure Mechanism of Foamed Mixture Lightweight Soil Using River Sludge[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(1): 114-119, 134. (in Chinese))
Foamed mixture lightweight soil using river sludge (FMLSS) is an inhomogeneous composite material composed of solid soil and micropores. The structural shape and distribution of micropores are main factors influencing the mechanical properties of FMLSS. In this article, the correlation between FMLSS’s mechanical properties and micropore’s mesoscopic characteristic is studied to reveal the strength and failure mechanism of FMLSS by means of physical mechanical tests and numerical simulation. According to the simulation and test measurement, large diameter micropore and the uniformity of diameter distribution are important factors that affect FMLSS’s mechanical properties; secondly, the air foam content and cement content in FMLSS are also main factors that affect FMLSS’s mechanical properties.
[9]
李荣贺, 顾欢达. 气泡制备因素对河道淤泥气泡混合土性质的影响研究[J]. raybet体育在线 院报, 2017, 34(9):137-141,149.
摘要
为考察气泡制备因素对河道淤泥气泡混合土性质的影响,以河道淤泥为原料土,通过对不同发泡剂成泡品质考察及发泡剂的优化配合设计,采用对比试验的方法,对河道淤泥气泡混合土的物理力学性质进行了研究。试验结果表明不同类型的发泡剂及发泡剂成泡品质对混合土性质影响明显,所选蛋白发泡剂在料浆中稳泡性变差,不满足密度要求;在同等密度下,气泡品质好的F型发泡剂制备的轻质土,其强度、破坏应变和E50均高于K12A型。这种具备稳泡性好、发泡倍数不易过低、成泡较均匀、可与料浆共存的成泡品质,有利于轻质土综合性能的提升。
(LI Rong-he, GU Huan-da. Influence of Bubble Preparation Factors on Properties of Foamed Mixture Soil Using River Sludge[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(9): 137-141, 149. (in Chinese))
The aim of this research is to investigate the influence of bubble preparation factors on the properties of foamed mixture soil using river sludge. We examined the foaming performance of different foaming agents and prepared a mixed foaming agent F by optimizing the proportions of foaming agents. On this basis, we analyzed the physical and mechanical properties of the foamed mixture soil with river sludge as raw material through contrast test. Results showed that different types and qualities of foam agents have apparent influence on the properties of the mixture soil. Protein foaming agent is of poor ability in stabilizing foams, hence could not meet density requirement. Under the same density, the lightweight soil prepared by foaming agent F is superior to that by foaming agent K12A in terms of strength, strain at failure and E50. In conclusion, good performance of foam-stabilization, expansion rate of foam, uniform bubbles, and co-existence with soil slurry would be beneficial to improving the comprehensive performance of light-weighted soil.
[10]
骆顺成, 顾欢达, 陈冬青. 河道淤泥气泡混合土工程性质试验研究[J]. raybet体育在线 院报, 2017, 34(2): 132-138.
摘要
河道淤泥气泡混合土(FMLSS)是一种具有轻质、高强度及良好流动性的新型工程材料,工程应用广泛。基于此,利用包括密度、强度与固结等物理力学试验方法,考察了FMLSS在不同水泥掺入比、气泡掺入比、含水量及养护龄期条件下的物理力学性质。试验结果表明:FMLSS具备良好的轻质性,其密度、强度与变形等物理力学性质主要受水泥掺入比、气泡掺入比及含水量等因素的影响,其中不同因素交叉作用的影响不可忽略;此外FMLSS的强度与刚度作用的发挥还受养护龄期的影响,且与养护龄期呈较好的双曲线关系;在承受外荷载作用时,FMLSS表现出良好的抵抗变形能力。研究结果表明FMLSS具有良好的工程适用性及应用前景。
(LUO Shun-cheng, GU Huan-da, CHEN Dong-qing. Engineering Properties of Foamed Mixture Lightweight Soil Using River Sludge[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(2): 132-138. (in Chinese))
Foamed mixture lightweight soil using river sludge(FMLSS) as a new engineering material of light weight and high strength is applied widely in engineering. By using physical and mechanical test methods on density, strength and consolidation, the physical and mechanical characteristics of FMLSS are analyzed in the presence of different cement contents, air foam contents, water contents and curing ages. Results show that the density, strength and deformation of FMLSS are mainly affected by cement content, air foam content and water content, and the influence of interaction among different factors cannot be ignored. In addition, the strength and stiffness of FMLSS are also affected by curing age, with which displaying a good hyperbolic relationship. Under external load, FMLSS shows good resistance to deformation. The study indicates that FMLSS has good engineering applicability and application prospect.
[11]
刘增祥, 顾欢达, 陈冬青. 河道淤泥气泡混合土动力特性试验研究[J]. 环境科学与技术, 2016, 39(7): 80-85.
(LIU Zeng-xiang, GU Huan-da, CHEN Dong-qing. Experimental Study on Dynamic Characteristics of Foamed Mixture Lightweight Soil Using River Sludge[J]. Environmental Science & Technology, 2016, 39(7): 80-85. (in Chinese))
[12]
刘增祥, 顾欢达, 陈冬青. 动力荷载作用下河道淤泥气泡混合土的变形特性试验[J]. 水利水电科技进展, 2016, 36(4):47-52.
(LIU Zeng-xiang, GU Huan-da, CHEN Dong-qing. Test on Deformation Characteristics of Foamed Mixture Lightweight Soil Using River Sludge under Dynamic Load[J]. Advances in Science and Technology of Water Resources, 2016, 36(4): 47-52. (in Chinese))
[13]
刘增祥, 顾欢达, 章培培, 等. 振动频率与龄期对河道淤泥气泡混合轻质土动力特性影响及机理[J]. 环境工程学报, 2017, 11(2): 1153-1158.
(LIU Zeng-xiang, GU Huan-da, ZHANG Pei-pei, et al. Effects of Cyclic Loading Frequency and Curing Age on Dynamic Characteristics and Mechanism of FMLSS[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1153-1158. (in Chinese))
[14]
黎冰. 动荷载下粘土与EPS颗粒混合轻质土的变形和强度特性试验研究[D]. 南京: 河海大学, 2007.
(LI Bing. Experimental Study on the Deformation and Strength Properties of Lightweight Clay-EPS Beads Soil under Cyclic Loading[D]. Nanjing: Hohai University, 2007. (in Chinese))
[15]
王庶懋, 高玉峰. 砂土与EPS颗粒混合的轻质土(LSES)细观结构的CT研究[J]. 岩土力学, 2006, 27(12): 2137-2142.
(WANG Shu-mao, GAO Yu-feng. Research on Meso-structure of Lightweight Sand-EPS Beads Soil (LSES) Using CT[J]. Rock and Soil Mechanics, 2006, 27(12): 2137-2142. (in Chinese))
[16]
高玉峰, 王庶懋, 王伟. 动荷载下砂土与EPS颗粒混合的轻质土变形特性的试验研究[J]. 岩土力学, 2007, 28(9):1773-1778.
(GAO Yu-feng, WANG Shu-mao, WANG Wei. Test Study on Deformation Characteristics of Lightweight Sand-EPS Beads Soil under Dynamic Load[J]. Rock and Soil Mechanics, 2007, 28(9): 1773-1778. (in Chinese))
[17]
何贤军. 气泡混合轻质土在奥运通道中填土减荷的工程实践[J]. 铁道工程学报, 2007, 24(7):29-32.
(HE Xian-jun. Construction Practice of Filling Olympic Corridor with Bubble Mixed Light Soil for Reduction of Load[J]. Journal of Railway Engineering Society, 2007, 24(7): 29-32. (in Chinese))
[18]
李苏醒. 气泡混合轻质土抗冲击试验与应用在机场中的有限元分析[D]. 南京: 南京航空航天大学, 2012.
(LI Su-xing. Impact Test and Finite Element Analysis of Foamed Light-weight Cement Based on the Airport Pavement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese))
[19]
李明东, 朱伟, 张春雷, 等. 击实参数对砂土EPS颗粒混合轻质土的影响[J]. 河海大学学报(自然科学版), 2008, 36(6): 814-817.
(LI Ming-dong, ZHU Wei, ZHANG Chun-lei, et al. Effect of Compaction Parameters on Lightweight Sand-EPS Beads Soil[J]. Journal of Hohai University (Natural Sciences), 2008, 36(6): 814-817. (in Chinese))
[20]
李荣贺, 顾欢达. 基于河道淤泥气泡混合土微观构造特征的发泡剂适用性研究[J]. 水土保持通报, 2018, 38(6): 144-150, 155.
(LI Rong-he, GU Huan-da. Applicability of Foaming Agent Based on Microstructure Characteristics of Foamed Mixture Lightweight Soil of River Sludge[J]. Bulletin of Soil and Water Conservation, 2018, 38(6): 144-150, 155. (in Chinese))
[21]
张亚琦, 彭文庆. 非等压偏应力下多因素对煤体渗透率影响的敏感性分析[J]. 煤矿安全, 2020, 51(9): 16-19.
摘要
为了探讨煤体在非等压偏应力状态下轴压、围压和瓦斯压力对渗透率影响程度的敏感性,利用损伤煤岩体渗流试验系统,进行了非等压偏应力下不同轴压、围压和瓦斯压力的渗流试验。试验结果表明:在非等压偏应力状态下,煤样渗透率对围压的敏感性最大,瓦斯压力次之,轴压最小;煤样轴向渗流的渗透率对围压的敏感性远大于轴压,渗透率对围压的敏感性大约是对轴压的敏感性的8.5倍,故在保护层开采实践中,通过降低被保护层垂直应力的增透措施的卸压增透效果要优于降低水平应力的卸压增透效果。
(ZHANG Ya-qi, PENG Wen-qing. Sensitivity Analysis of Influence of Many Factors on Coal Permeability under Non-isostatic Deviating Stress[J]. Safety in Coal Mines, 2020, 51(9): 16-19. (in Chinese))
<p>&nbsp;In order to explore the sensitivity of axial pressure, confining pressure and gas pressure on permeability of coal under non-isostatic deviating stress, seepage tests of different axial pressures, confining pressures and gas pressures under non-isostatic deviating stress were carried out by using the seepage test system of damaged coal-rock mass. The test results show that: the permeability of coal sample is the most sensitive to confining pressure, followed by gas pressure, then axial pressure is minimal; the permeability of coal sample is much more sensitive to confining pressure than axial pressure, the sensitivity of permeability to confining pressure is about 8.5 times that of axial pressure. Therefore, in the mining practice of the protective layer, the pressure-relief effect by reducing the vertical stress of the protected layer is better than that by reducing the horizontal stress.</p>
[22]
WAKO T, TSUCHIDA T, MATSUNAGA Y. Use of Artificial Light Weight Materials for Port Facility[J]. Journal of JSCE, 1998,602: 35-42.
[23]
侯天顺. 淤泥发泡颗粒混合轻量土力学性质的试验研究[D]. 武汉: 中国地质大学, 2008.
(HOU Tian-shun. Experimental Study on Mechanical Properties of Foamed Particle Light Weight Soil Mixed with Silt[D]. Wuhan: China University of Geosciences, 2008. (in Chinese))
[24]
姬凤玲. 淤泥泡沫塑料颗粒轻质混合土力学特性研究[D]. 南京: 河海大学, 2005.
(JI Feng-ling. Study on Mechanical Properties of Lightweight Bead-treated Soil Made from Silt[D]. Nanjing: Hohai University, 2005. (in Chinese))
[25]
章培培, 顾欢达, 陈冬青. 河道淤泥气泡混合土微观构造及力学性质相关性[J]. 土木建筑与环境工程, 2015, 37(6): 78-86.
(ZHANG Pei-pei, GU Huan-da, CHEN Dong-qing. Correlation Analysis of Microscopic Structure and the Mechanical Properties about Foamed Mixture Lightweight Soil Using River Sludge[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(6): 78-86. (in Chinese))
[26]
骆顺成, 顾欢达, 陈冬青. 河道淤泥气泡混合土微观构造对其力学性能的影响[J]. 水电能源科学, 2016, 34(9): 131-135.
(LUO Shun-cheng, GU Huan-da, CHEN Dong-qing. Analysis of Microstructure and Correlation with Mechanical Properties of Foamed Mixture Lightweight Soil Using River Sludge[J]. Water Resources and Power, 2016, 34(9): 131-135. (in Chinese))

基金

国家自然科学基金项目(51378327)
江苏省高等学校基础科学(自然科学)研究项目(22KJB170020)

编辑: 王慰
PDF(1119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map