孔隙水压力作用下二级土坡稳定性图表分析

侯福昌, 贾尚达, 李结全, 曾祥兴, 张璐

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (1) : 162-168.

PDF(1424 KB)
PDF(1424 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (1) : 162-168. DOI: 10.11988/ckyyb.20230967
岩土工程

孔隙水压力作用下二级土坡稳定性图表分析

作者信息 +

Stability Charts for a Two-stage Soil Slope Subjected to Pore Water Pressure

Author information +
文章历史 +

摘要

针对评估二级边坡稳定性问题,相较于迭代求解法,边坡稳定性图表提供了一个快速且便捷的方式。基于极限分析上限定理,构建二级边坡整体和局部破坏机构,引入孔隙水压力系数ru,推导了破坏机构内外功率表达式,求解出二级边坡处于极限平衡状态下c/(γH)和tanφ关系曲线,即极限状态曲线(g-line)。根据g-line图表法,绘制出一系列二级边坡稳定性图表。通过对比验证了稳定性图表的有效性,探讨了边坡孔隙水压力、边坡几何形状及内摩擦角对边坡稳定性及其破坏模式的影响规律。结果表明:孔隙水压力会导致极限状态曲线向外移动,降低边坡稳定性;边坡破坏模式受边坡几何形状影响,凸形边坡及凹形边坡易发生局部破坏,孔隙水压力作用下局部破坏范围扩大;随着土体内摩擦角增大,临界滑动面向坡面移动,整体破坏逐渐转变为局部破坏。利用所建立的边坡稳定性图表可以简单快速得到边坡稳定安全系数及相应的破坏模式,为类似边坡工程稳定性的评估提供一定的参考。

Abstract

Slope stability charts offer a rapid and efficient alternative to the iterative method for assessing the stability of two-stage soil slopes. Employing the upper bound theorem of limit analysis,the global and local failure mechanisms were constructed for two-stage soil slopes. By incorporating the pore water pressure coefficient ru,the expressions for internal and external work rates of the failure mechanism were derived,and the relationship curves between c/(γH) and tanφ for two-stage soil slopes in ultimate equilibrium state were obtained,referred to as the limit state curve (g-line). Based on this g-line,a series of two-stage soil slope stability charts were developed. The validity of these charts was confirmed through comparative analysis,and the effects of slope pore water pressure,geometry,and internal friction angle on slope stability and failure modes were systematically investigated. Results reveal that pore water pressure leads to the outward shift of the limit state curve,reducing slope stability. The failure mode of slopes is significantly influenced by their geometric shapes: convex and concave slopes are susceptible to local failures,with the extent of local failure expanding under the influence of pore water pressure. Additionally,as the internal friction angle of soil increases,the critical sliding surface shifts toward the slope surface,transitioning from global to local failure. The developed slope stability charts enable the simple and rapid evaluation of slope’s safety factors and corresponding failure modes,providing a valuable reference for stability assessments in similar slope engineering projects.

关键词

边坡稳定性 / 安全系数 / 孔隙水压力 / 稳定性图表 / 极限分析

Key words

slope stability / factor of safety / pore water pressure / stability chart / limit analysis

引用本文

导出引用
侯福昌, 贾尚达, 李结全, . 孔隙水压力作用下二级土坡稳定性图表分析[J]. raybet体育在线 院报. 2025, 42(1): 162-168 https://doi.org/10.11988/ckyyb.20230967
HOU Fu-chang, JIA Shang-da, LI Jie-quan, et al. Stability Charts for a Two-stage Soil Slope Subjected to Pore Water Pressure[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(1): 162-168 https://doi.org/10.11988/ckyyb.20230967
中图分类号: TU431 (土和地基的应力)   

参考文献

[1]
LI A J, LYAMIN A V, MERIFIELD R S. Seismic Rock Slope Stability Charts Based on Limit Analysis Methods[J]. Computers and Geotechnics, 2009, 36(1/2):135-148.
[2]
TANG G P, ZHAO L H, LI L, et al. Stability Charts of Slopes under Typical Conditions Developed by Upper Bound Limit Analysis[J]. Computers and Geotechnics, 2015, 65: 233-240.
[3]
SUN J, ZHAO Z. Stability Charts for Homogeneous Soil Slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2212-2218.
[4]
TAYLOR D W. Stability of Earth Slopes[J]. Journal of Boston Society Civil Engineers, 1937, 24(3): 197-246.
[5]
STEWARD T, SIVAKUGAN N, SHUKLA S K, et al. Taylor’s Slope Stability Charts Revisited[J]. International Journal of Geomechanics, 2011, 11(4): 348-352.
[6]
SAHOO P P, SHUKLA S K. Taylor’s Slope Stability Chart for Combined Effects of Horizontal and Vertical Seismic Coefficients[J]. Géotechnique, 2019, 69(4): 344-354.
[7]
MICHALOWSKI R L. Stability Charts for Uniform Slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 351-355.
[8]
ZHANG P, LIU L L, ZHANG S H, et al. Material Point Method-based Two-dimensional Cohesive-frictional Slope Stability Analysis Charts Considering Depth Coefficient Effect[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 206.
[9]
HUANG W, JI J. Upper Bound Seismic Limit Analysis of Shallow Landslides with a New Kinematically Admissible Failure Mechanism[J]. Acta Geotechnica, 2023, 18(5): 2473-2485.
[10]
YANG T, ZOU J F, PAN Q J. Three-dimensional Seismic Stability of Slopes Reinforced by Soil Nails[J]. Computers and Geotechnics, 2020, 127: 103768.
[11]
年廷凯, 刘成, 万少石, 等. 水位下降条件下黏性土边坡稳定性的图表法[J]. 岩土力学, 2012, 33(2): 569-576.
(NIAN Ting-kai, LIU Cheng, WAN Shao-shi, et al. Graphic Method for Stability of Clay Slopes during Water Level Drawdown[J]. Rock and Soil Mechanics, 2012, 33(2): 569-576. (in Chinese))
[12]
MICHALOWSKI R L, MARTEL T. Stability Charts for 3D Failures of Steep Slopes Subjected to Seismic Excitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(2): 183-189.
[13]
HE Y, LIU Y, ZHANG Y, et al. Stability Assessment of Three-dimensional Slopes with Cracks[J]. Engineering Geology, 2019, 252: 136-144.
The stability of three-dimensional (3D) slopes with cracks is presented based on the kinematic approach of limit analysis. The sequence quadratic program optimization procedure is applied to obtain the least upper bound results. The most critical crack, including the crack depth and crack location in the 3D slope, is discussed. To provide a quick reference of the slope safety factor, stability charts are presented. The geometry of the critical failure surfaces, including the most unfavorable cracks for slopes with different width constraints and inclinations, are analyzed as well. Conclusions can be drawn that the critical height of the slope reduces due to the presence of cracks. A larger reduction in the critical height of slopes is found under plane strain conditions, compared to that under three-dimensional conditions. This reduction drops, however, with decreasing slope inclination angle. In addition, when compared with plane-strain conditions (slope width approaches infinity), the 3D slopes (with limited width) exhibit shallow sliding characteristics.
[14]
孙超伟, 柴军瑞, 许增光, 等. 求解三维均质边坡安全系数的稳定性图表法研究[J]. 岩土工程学报, 2018, 40(11): 2068-2077.
(SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, et al. Stability Charts for Determining Safety Factors of 3D Homogeneous Slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2068-2077. (in Chinese))
[15]
KLAR A, AHARONOV E, KALDERON-ASAEL B, et al. Analytical and Observational Relations between Landslide Volume and Surface Area[J]. Journal of Geophysical Research: Earth Surface, 2011, Doi: 10.1029/2009JF001604.
[16]
姚泽. 地震、孔隙水压力作用下均质边坡稳定性的快速评价方法[D]. 石家庄: 石家庄铁道大学, 2021.
(YAO Ze. Rapid Evaluation Method for the Stability of Homogeneous Slopes under Seismic and Pore Water Pressure Conditions[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. (in Chinese))
[17]
CHEN L, ZHANG W, ZHENG Y, et al. Stability Analysis and Design Charts for Over-dip Rock Slope Against Bi-planar Sliding[J]. Engineering Geology, 2020,275:105732.
[18]
XU X, LI J, GONG J, et al. Copula-based Slope Reliability Analysis Using the Failure Domain Defined by the G-line[J]. Mathematical Problems in Engineering, 2016, Doi: 10.1155/2016/6141838.
[19]
QIN C, CHIAN S C. New Perspective on Seismic Slope Stability Analysis[J]. International Journal of Geomechanics, 2018,Doi: 10.1061/(ASCE)GM.1943-5622.000117.
[20]
朱剑宏. 地震作用下土质边坡稳定性图表[J]. 公路交通科技, 2020, 37(12): 47-51.
摘要
针对评估边坡稳定性问题,边坡稳定性图表提供了一种简单但却行之有效的途径。选用对数螺旋面作为边坡破坏模式,利用拟静力法考虑地震效应的影响,并基于极限分析运动学定理推导了破坏机构内外功率计算公式,采用MATLAB最优化程序求解出边坡临界高度γH/c的上限解。通过确定边坡处于极限状态时的c/γH和tan φ关系曲线,绘制了一系列边坡稳定性图表。讨论了坡角、内摩擦角与地震荷载对边坡稳定性及其破坏模式的影响。结果表明:坡底破坏模式仅在坡角及内摩擦角均较小的情况下发生,且随着地震荷载的增大,坡底破坏模式更易发生;随着内摩擦角的增大,破坏模式逐渐由深层破坏转变为浅层破坏;边坡坡角较大时,边坡临界滑动面总是呈浅层破坏模式,并随着地震荷载的增大,边坡安全系数逐渐减小。对于内摩擦角接近于0°的土体,当坡角较小且边坡受到地震荷载影响时,需要对破坏深度作一定限制以得到合理解答。利用所建立的边坡稳定性图表无须迭代计算即可求得边坡安全系数以及对应的破坏模式。通过对比验证了所建立边坡稳定性图表的合理性。所得结果可为边坡工程稳定性评估提供一定参考。
(ZHU Jian-hong. Stability Charts for Soil Slopes under Seismic Excitation[J]. Journal of Highway and Transportation Research and Development, 2020, 37(12): 47-51. (in Chinese))
[21]
CUI H, JI J, SONG J, et al. Limit State Line-based Seismic Stability Charts for Homogeneous Earth Slopes[J]. Computers and Geotechnics, 2022, 146: 104749.
[22]
饶平平, 吴健, 崔纪飞, 等. 裂缝边坡三维极限上限拓展分析[J]. 岩土工程学报, 2021, 43(9): 1612-1620.
(RAO Ping-ping, WU Jian, CUI Ji-fei, et al. Extended Three-dimensional Analysis of Cracked Slopes Using Upper-bound Limit Method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. (in Chinese))
[23]
孙超伟, 柴军瑞, 许增光, 等. 基于Hoek-Brown强度折减法的边坡稳定性图表法研究[J]. 岩石力学与工程学报, 2018, 37(4):838-851.
(SUN Chao-wei, CHAI Jun-rui, XU Zeng-guang, et al. Stability Charts for Rock Slopes Based on the Method of Reduction of Hoek-brown Strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4):838-851. (in Chinese))
[24]
QIN C B, CHIAN S C. Kinematic Stability of a Two-stage Slope in Layered Soils[J]. International Journal of Geomechanics, 2017, Doi: 10.1061/(ASCE)GM.1943-5622.000092.
[25]
GAO Lian-sheng, ZHAO Lian-heng, TANG Gao-peng, et al. Upper Bound Limit Analysis of Stability on Inhomogeneity and Anisotropy Two-stage Slope[J]. Electronic Journal of Geotechnical Engineering, 2013,18:3581-3604.
[26]
周强. 利用上限定理的二级边坡地震稳定性研究[J]. 公路工程, 2013, 38(2): 174-176.
(ZHOU Qiang. Slope with Multi-step Stability under Earthquake Forces Based on Limit Analysis[J]. Highway Engineering, 2013, 38(2): 174-176. (in Chinese))
[27]
郭勇. 考虑孔隙水压力作用的二级边坡稳定性上限分析[J]. 公路工程, 2014, 39(4): 252-255.
(GUO Yong. Stability Analysis of Secondary Slope under Pore Water Pressure[J]. Highway Engineering, 2014, 39(4): 252-255. (in Chinese))
[28]
YANG X L, LI Z W. Factor of Safety of Three-dimensional Stepped Slopes[J]. International Journal of Geomechanics, 2018, Doi: 10.1061/(ASCE)GM.1943-5622.0001154.
[29]
章瑞环, 叶帅华, 陶晖. 基于改进极限平衡法的多级均质黄土边坡稳定性分析[J]. 岩土力学, 2021, 42(3): 813-825.
(ZHANG Rui-huan, YE Shuai-hua, TAO Hui. Stability Analysis of Multistage Homogeneous Loess Slopes by Improved Limit Equilibrium Method[J]. Rock and Soil Mechanics, 2021, 42(3): 813-825. (in Chinese))
[30]
ZHANG Z L, YANG X L. Unified Solution of Safety Factors for Three-dimensional Compound Slopes Considering Local and Global Instability[J]. Computers and Geotechnics, 2023, 155: 105227.
[31]
JIANG J C, YAMAGAMI T. Charts for Estimating Strength Parameters from Slips in Homogeneous Slopes[J]. Computers and Geotechnics, 2006, 33(6/7): 294-304.
[32]
CHEN W F. Limit Analysis and Soil Plasticity[M]. New York: Elsevier Scientific Pub. Co., 1975.
[33]
BISHOP A W. The Use of Pore-pressure Coefficients in Practice[J]. Géotechnique, 1954, 4(4): 148-152.
[34]
BISHOP A W, MORGENSTERN N. Stability Coefficients for Earth Slopes[J]. Géotechnique, 1960, 10(4):129-153.
[35]
MICHALOWSKI R L. Slope Stability Analysis:A Kinematical Approach[J]. Geotechnique, 1995, 45(2):283-293.

基金

国家自然科学基金项目(52068015)

编辑: 王慰
PDF(1424 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map