基于InVEST模型和PLUS模型的三峡库区(重庆段)碳储量时空变化及预测

尹珂, 廖思雨

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 60-69.

PDF(2591 KB)
PDF(2591 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 60-69. DOI: 10.11988/ckyyb.20230590
水土保持与生态修复

基于InVEST模型和PLUS模型的三峡库区(重庆段)碳储量时空变化及预测

作者信息 +

Spatio-temporal Variation and Prediction of Carbon Stocks in Chongqing Section of Three Gorges Reservoir Area Based on InVEST-PLUS Model

Author information +
文章历史 +

摘要

分析三峡库区(重庆段)近10 a的土地利用类型及碳储量的空间格局,并模拟未来10 a不同情景下土地变化趋势、预测碳储量变化,有利于促进区域土地利用格局的优化、合理生态政策的制定。利用InVEST模型,选取13个驱动因子,分析三峡库区(重庆段)在2010—2020年及不同发展情景下2030年的土地利用变化趋势,并结合PLUS模型评估其碳储量状况。结果表明:①2010—2020年三峡库区(重庆段)土地利用变化主要表现为耕地、草地和湿地向林地、建设用地及水域的快速转移;2010年、2020年碳储量分别为426.89×106、425.51×106 t,呈下降趋势,总量减少了1.38×106 t;②碳储量分布具有空间分异性,总体表现为西低东高、南低北高、库首>库尾,碳储量空间变化与地类变化具有较高的一致性;土地利用空间格局演变的贡献度最高的驱动因素是社会经济因子,其中人口、GDP最为突出;③到2030年,自然发展情景和城镇发展情景下碳储量分别减少了0.76×106、8.98×106 t,生态保护情景下增加了3.72×106 t。高碳密度的地类向低碳密度地类转移是导致碳储量减少的主要原因,因此,未来应形成平衡、协调、低碳的土地利用空间格局,规划城市增长边界,重点保障巫山山系、大巴山系、武陵山系等林草高碳储量区,推行尾库区复林复草,保障库区碳汇功能。

Abstract

Analyzing the spatial patterns of land use and carbon stocks in the Three Gorges reservoir area (Chongqing section) over the past decade, and simulating land change trends and predicting carbon stock variations under different scenarios for the next decade, can significantly aid in optimizing regional land use patterns and formulating effective ecological policies. We employed the InVEST model and examined 13 driving factors to analyze land use changes in the Three Gorges reservoir area (Chongqing section) from 2010 to 2020 and to predict trends for 2030 under various development scenarios. We also assessed carbon stock status using the PLUS model. Results reveal that: (1) From 2010 to 2020, land use changes in the Three Gorges reservoir area (Chongqing section) were primarily characterized by the conversion of arable land, grassland, and wetlands to forest land, construction land, and water bodies. Carbon stocks in 2010 and 2020 were 426.89×106and 425.51×106 t, respectively, indicating a decline of 1.38×106 t. (2) Carbon stock distribution exhibited spatial differentiation, with lower levels in the west and higher levels in the east, lower in the south and higher in the north, and higher at the reservoir’s head compared to its tail. The spatial changes in carbon stocks closely aligned with changes in land types. Socio-economic factors, particularly population and GDP, contributed most significantly to the spatial pattern evolution. (3) By 2030, carbon stocks are projected to decrease by 0.76×106 and 8.98×106 t under natural scenario and urban development scenario, respectively, but increase by 3.72×106 t under ecological protection scenario. The primary cause of carbon stock reduction is the transition from high-carbon-density land types to low-carbon-density land types. To address these issues, future strategies should focus on creating a balanced, coordinated, and low-carbon spatial land-use pattern, planning urban growth boundaries, and prioritizing the protection of high carbon-storage areas such as the Wushan Mountain System, Daba Mountain System, and Wuling Mountain System. Additionally, restoring forests and grasslands in reservoir tail areas is crucial to preserving carbon sink functions.

关键词

碳储量 / 三峡库区 / PLUS模型 / InVEST模型 / 土地利用变化

Key words

carbon stock / Three Gorges reservoir area / PLUS model / InVEST model / land use change

引用本文

导出引用
尹珂, 廖思雨. 基于InVEST模型和PLUS模型的三峡库区(重庆段)碳储量时空变化及预测[J]. raybet体育在线 院报. 2024, 41(9): 60-69 https://doi.org/10.11988/ckyyb.20230590
YIN Ke, LIAO Si-yu. Spatio-temporal Variation and Prediction of Carbon Stocks in Chongqing Section of Three Gorges Reservoir Area Based on InVEST-PLUS Model[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 60-69 https://doi.org/10.11988/ckyyb.20230590
中图分类号: X171.1 (生态系统与生态环境)   

参考文献

[1]
朱丽亚, 胡克, 孙爽, 等. 基于InVEST模型的辽宁省海岸带碳储量时空变化研究[J]. 现代地质, 2022, 36(1): 96-104.
(ZHU Li-ya, HU Ke, SUN Shuang, et al. Research on the Spatiotemporal Variation of Carbon Storage in the Coastal Zone of Liaoning Province Based on InVEST Model[J]. Geoscience, 2022, 36(1): 96-104. (in Chinese))
[2]
任玺锦, 裴婷婷, 陈英, 等. 基于碳密度修正的甘肃省土地利用变化对碳储量的影响[J]. 生态科学, 2021, 40(4): 66-74.
(REN Xi-jin, PEI Ting-ting, CHEN Ying, et al. Impact of Land Use Change on Carbon Storage in Gansu Province Based on Carbon Density Correction[J]. Ecological Science, 2021, 40(4): 66-74. (in Chinese))
[3]
李青. 基于InVEST模型辽宁省生态系统水源涵养服务功能研究[D]. 大连: 辽宁师范大学, 2022.
(LI Qing. Study on Water Conservation Service Function of Liaoning Ecosystem Based on InVEST Model[D]. Dalian: Liaoning Normal University, 2022. (in Chinese))
[4]
葛全胜, 戴君虎, 何凡能, 等. 过去 300 年中国土地利用、土地覆被变化与碳循环研究[J]. 中国科学D辑, 2008, 38(2): 197-210.
(GE Quan-sheng, DAI Jun-hu, HE Fan-neng, et al. Land Use, Land Cover Changes, and Carbon Cycle in China over the Past Three Centuries[J]. Science in China Series D: Earth Sciences, 2008, 38(2): 197-210. (in Chinese))
[5]
HOUGHTON R A. Counting Terrestrial Sources and Sinks of Carbon[J]. Climatic Change, 2001, 48(4): 525-534.
[6]
王超越, 郭先华, 郭莉, 等. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响: 以呼包鄂榆城市群为例[J]. 生态环境学报, 2022, 31(8): 1667-1679.
(WANG Chao-yue, GUO Xian-hua, GUO Li, et al. Land Use Change and Its Impact on Carbon Storage in Northwest China Based on FLUS-Invest: a Case Study of Hu-Bao-Er-Yu Urban Agglomeration[J]. Ecology and Environmental Sciences, 2022, 31(8): 1667-1679. (in Chinese))
[7]
LI X, HUANG C, JIN H, et al. Spatio-temporal Patterns of Carbon Storage Derived Using the InVEST Model in Heilongjiang Province, Northeast China[J]. Frontiers in Earth Science, 2022, 10: 846456.
[8]
张影, 谢余初, 齐姗姗, 等. 基于InVEST模型的甘肃白龙江流域生态系统碳储量及空间格局特征[J]. 资源科学, 2016, 38(8): 1585-1593.
(ZHANG Ying, XIE Yu-chu, QI Shan-shan, et al. Carbon Storage and Spatial Distribution Characteristics in the Bailongjiang Watershed in Gansu Based on InVEST Model[J]. Resources Science, 2016, 38(8): 1585-1593. (in Chinese))
[9]
WANG C, LUO J, QING F, et al. Analysis of the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in Taihang Mountains Based on InVEST Model[J]. Applied Sciences, 2022, 12(20): 10662.
[10]
LIANG X, GUAN Q, CLARKE K C, et al. Understanding the Drivers of Sustainable Land Expansion Using a Patch-generating Land Use Simulation (PLUS) Model: a Case Study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569.
[11]
胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125-1136.
(HU Feng, ZHANG Yan, GUO Yu, et al. Spatial and Temporal Changes in Land Use and Habitat Quality in the Weihe River Basin Based on the PLUS and InVEST Models and Predictions[J]. Arid Land Geography, 2022, 45(4): 1125-1136. (in Chinese))
[12]
杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182.
(YANG Lian-wei, ZHAO Juan, ZHU Jia-tian, et al. Spatial-temporal Change and Prediction of Carbon Stock in the Ecosystem of Xi’an Based on PLUS and InVEST Models[J]. Remote Sensing for Natural Resources, 2022, 34( 4) : 175-182. (in Chinese))
[13]
林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的碳储量空间关联性及预测: 以广东省为例[J]. 中国环境科学, 2022, 42(10): 4827-4839.
(LIN Tong, YANG Mu-zhuang, WU Da-fang, et al. Spatial Correlation and Prediction of Land Use Carbon Storage Based on the InVEST-PLUS Model:a Case Study in Guangdong Province[J]. China Environmental Science, 2022, 42(10): 4827-4839. (in Chinese))
[14]
丁岳, 王柳柱, 桂峰, 等. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 2023, 44(6): 3343-3352.
(DING Yue, WANG Liu-zhu, GUI Feng, et al. Ecosystem Carbon Storage in Hangzhou Bay Area Based on InVEST and PLUS Models[J]. Environmental Science, 2023, 44(6): 3343-3352. (in Chinese))
[15]
李月臣, 刘春霞, 闵婕, 等. 三峡库区生态系统服务功能重要性评价[J]. 生态学报, 2013, 33(1): 168-178.
(LI Yue-chen, LIU Chun-xia, MIN Jie, et al. RS/GIS-based Integrated Evaluation of the Ecosystem Services of the Three Gorges Reservoir Area (Chongqing Section)[J]. Acta Ecologica Sinica, 2013, 33(1): 168-178. (in Chinese))
[16]
安敏, 李文佳, 吴海林, 等. 三峡库区生态环境质量的时空格局演变及影响因素[J]. 长江流域资源与环境, 2022, 31(12): 2743-2755.
(AN Min, LI Wen-jia, WU Hai-lin, et al. The Evolution and Influencing Factors of the Spatial-temporal Pattern of Ecological Environment Quality in the Three Gorges Reservoir Area[J]. Resources and Environment in the Yangtze Basin, 2022, 31(12): 2743-2755. (in Chinese))
[17]
范立红, 朱建华, 李奇, 等. 三峡库区土地利用/覆被变化对碳储量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 53-60.
(FAN Li-hong, ZHU Jian-hua, LI Qi, et al. Effects of Changes in Land Use and Cover on Carbon Storage in the Three Gorges Reservoir Area[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(4): 53-60. (in Chinese))
[18]
ZHANG F, ZHAN J, ZHANG Q, et al. Impacts of Land Use/Cover Change on Terrestrial Carbon Stocks in Uganda[J]. Physics And Chemistry Earth, Parts A/B/C, 2017, 101: 195-203.
[19]
刘兆丹, 李斌, 方晰, 等. 湖南省森林植被碳储量、碳密度动态特征[J]. 生态学报, 2016, 36(21): 6897-6908.
(LIU Zhao-dan, LI Bin, FANG Xi, et al. Dynamic Characteristics of Forest Carbon Storage and Carbon Density in the Hunan Province[J]. Acta Ecologica Sinica, 2016, 36(21): 6897-6908. (in Chinese))
[20]
丁访军, 潘忠松, 吴鹏, 等. 贵州东部常绿落叶阔叶混交林碳素积累及其分配特征[J]. 生态学报, 2015, 35(6): 1761-1768.
(DING Fang-jun, PAN Zhong-song, WU Peng, et al. Carbon Accumulation and Distribution Characteristics of the Evergreen Broad-leaved and Deciduous Broad-leaved Mixed Forests in East Guizhou[J]. Acta Ecologica Sinica, 2015, 35(6): 1761-1768. (in Chinese))
[21]
ALAM S A, STARR M, CLARK B J F. Tree Biomass and Soil Organic Carbon Densities across the Sudanese Woodland Savannah: a Regional Carbon Sequestration Study[J]. Journal of Arid Environments, 2013, 89: 67-76.
[22]
CHUAI X, HUANG X, LAI L, et al. Land Use Structure Optimization Based on Carbon Storage in Several Regional Terrestrial Ecosystems across China[J]. Environmental Science & Policy, 2013, 25: 50-61.
[23]
周汝波, 林媚珍, 吴卓, 等. 珠江西岸生态系统碳储量对土地利用变化的响应[J]. 生态科学, 2018, 37(6): 175-183.
(ZHOU Ru-bo, LIN Mei-zhen, WU Zhuo, et al. Responses of Ecosystem Carbon Stocks to Land Use Change on the West Side of the Pearl River[J]. Ecological Science, 2018, 37(6): 175-183. (in Chinese))
[24]
ZHENG Y, NIU Z, GONG P, et al. Preliminary Estimation of the Organic Carbon Pool in China’s Wetlands[J]. Chinese Science Bulletin, 2013, 58(6): 662-670.
[25]
邰继承, 靳振江, 崔立强. 不同土地利用下湖北江汉平原湿地起源土壤有机碳组分的变化[J]. 水土保持学报, 2011, 25(6): 124-128.
(TAI Ji-cheng, JIN Zhen-jiang, CUI Li-qiang. Changes in Soil Organic Carbon Fractions with Land Uses in Soils Reclaimed from Wetlands of Jianghan Plain, Hubei Province[J]. Journal of Soil and Water Conservation, 2011, 25(6): 124-128. (in Chinese))
[26]
张剑, 罗贵生, 王小国, 等. 长江上游地区农作物碳储量估算及固碳潜力分析[J]. 西南农业学报, 2009, 22(2): 402-408.
(ZHANG Jian, LUO Gui-sheng, WANG Xiao-guo, et al. Carbon Stock Estimation and Sequestration Potential of Crops in the Upper Yangtze River Basin[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(2): 402-408. (in Chinese))
[27]
黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3): 966-975.
(HUANG Cong-de, ZHANG Jian, YANG Wan-qin, et al. Dynamics on Forest Carbon Stock in Sichuan Province and Chongqing City[J]. Acta Ecologica Sinica, 2008, 28(3): 966-975. (in Chinese))
[28]
万其林, 邵景安. 2000—2020年三峡库区重庆段土地利用及碳储量估算[J]. 重庆师范大学学报(自然科学版), 2023, 40(6): 52-64.
(WAN Qi-lin, SHAO Jing-an. Land Use and Carbon Storage Estimation in the Chongqing Section of the Three Gorges Reservoir from 2000 to 2020[J]. Journal of Chongqing Normal University(Natural Science), 2023, 40(6): 52-64. (in Chinese))
[29]
毛永发, 周启刚, 王陶, 等. 耦合PLUS-InVEST-Geodector模型的三峡库区碳储量时空变化及其定量归因[J]. 长江流域资源与环境, 2023, 32(5): 1042-1057.
(MAO Yong-fa, ZHOU Qi-gang, WANG Tao, et al. Spatial-temporal Variation of Carbon Storage and Its Quantitative Attribution in the Three Gorges Reservoir Area Coupled with PLUS-invest Geodector Model[J]. Resources and Environment in the Yangtze Basin, 2023, 32(5): 1042-1057. (in Chinese))
[30]
雒舒琪, 胡晓萌, 孙媛, 等. 耦合PLUS-InVEST模型的多情景土地利用变化及其对碳储量影响[J]. 中国生态农业学报(中英文), 2023, 31(2): 300-314.
(LUO Shu-qi, HU Xiao-meng, SUN Yuan, et al. Multi-scenario Land Use Change and Its Impact on Carbon Storage Based on Coupled PLUS-InVEST Model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 300-314. (in Chinese))
[31]
王鹏程, 邢乐杰, 肖文发, 等. 三峡库区森林生态系统有机碳密度及碳储量[J]. 生态学报, 2009, 29(1): 97-107.
(WANG Peng-cheng, XING Le-jie, XIAO Wen-fa, et al. Organic Carbon Density and Storage of Forest Ecosystems in Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2009, 29(1): 97-107. (in Chinese))
[32]
靳伟, 倪天珍, 杨婷婷. 四川省草地生态系统碳储量估算[J]. 四川林业科技, 2014, 35(5): 8-12.
(JIN Wei, NI Tian-zhen, YANG Ting-ting. Estimation of Carbon Storage in the Grassland Ecosystem in Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2014, 35(5): 8-12. (in Chinese))
[33]
李奇. 三峡库区生态系统服务时空变化与权衡研究[D]. 北京: 中国林业科学研究院, 2020.
(LI Qi. Temporal and Spatial Changes and Trade-offs of Ecosystem Services in Three Gorges Reservoir Area[D]. Beijing: Chinese Academy of Forestry, 2020. (in Chinese))
[34]
柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响:以湖北省为例[J]. 生态学报, 2019, 39(2): 672-683.
(KE Xin-li, TANG Lan-ping. Impact of Cascading Processes of Urban Expansion and Cropland Reclamation on the Ecosystem of a Carbon Storage Service in Hubei Province,China[J]. Acta Ecologica Sinica, 2019, 39(2): 672-683. (in Chinese))
[35]
刘刚, 陈利. 洪湖湿地碳储量的研究[J]. 中南林业科技大学学报, 2013, 33(8): 103-107.
(LIU Gang, CHEN Li. Study on Carbon Storage in Honghu Lake Wetland[J]. Journal of Central South University of Forestry & Technology, 2013, 33(8): 103-107. (in Chinese))
[36]
牛统莉, 熊立华, 陈杰, 等. 基于PLUS模型的长江流域土地利用变化模拟与多情景预测[J]. 武汉大学学报(工学版), 2024, 57(2): 129-141,151.
(NIU Tong-li, XIONG Li-hua, CHEN Jie, et al. Land Use Simulation and Multi-scenario Prediction of the Yangtze River Basin Based on PLUS Model[J]. Engineering Journal of Wuhan University, 2024, 57(2): 129-141,151. (in Chinese))
[37]
孙欣欣, 薛建辉, 董丽娜. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 2023, 39(1): 41-51.
(SUN Xin-xin, XUE Jian-hui, DONG Li-na. Spatiotemporal Change and Prediction of Carbon Storage in Nanjing Ecosystem Based on PLUS Model and InVEST Model[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 41-51. (in Chinese))
[38]
谢向东, 林孝松, 王莹, 等. 基于 PLUS模型的重庆市南川区土地利用多情景模拟[J]. raybet体育在线 院报, 2023, 40(6): 86-92,113.
(XIE Xiang-dong, LIN Xiao-song, WANG Ying, et al. Multi-scenario Simulation of Land Use in Nanchuan District of Chongqing Based on PLUS Model[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(6): 86-92,113. (in Chinese))

基金

国家社会科学基金项目(20BJL102)

编辑: 罗娟
PDF(2591 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map