面向供水管网漏损监测的传感器优化布置多准则决策分析方法

王莹, 谭德宝, 叶松, 胡祖康, 姚正利

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 178-184.

PDF(2066 KB)
PDF(2066 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 178-184. DOI: 10.11988/ckyyb.20230461
水利信息化

面向供水管网漏损监测的传感器优化布置多准则决策分析方法

作者信息 +

Multi-criteria Decision-making Method for Optimal Sensor Layout for Leakage Monitoring of Water Supply Network

Author information +
文章历史 +

摘要

供水管网漏损精准监测对于避免水资源浪费具有重要意义,为此,提出一种面向供水管网漏损监测的传感器优化布置多准则决策分析方法。基于充分考虑传感器布置优化的权重、差异阈值和偏好阈值的不确定性,利用信息熵在整个决策空间内对传感器的初始位置进行筛选再根据漏损监测目标,通过定义一组传感器布置优化准则,利用多准则决策分析方法对初始方案进行排序,得到顾及多组参数及不同偏好场景下各种初始方案的概率排序。为了验证该方法的适用性,采用基准测试管网 k1模型开展仿真试验并比较了几种不同的偏好场景。结果表明所提出的方法能够适应顺序优先和最重要的优先顺序,而且能够对方案进行排序和成对比较,避免了使用“黑匣子”对传感器布置方案进行选择。

Abstract

Accurate monitoring of leakage losses in water supply pipeline network is crucial for preventing water resource waste. This study proposes a multi-criteria decision analysis method to optimize sensor arrangement for monitoring the pipeline leakage loss. To address uncertainties in weights, difference thresholds, and preference thresholds in sensor arrangement, we used information entropy to screen initial sensor positions within the decision space. Based on monitoring objectives, we defined criteria for sensor arrangement optimization and applied the multi-criteria decision analysis method to rank the initial schemes. Taking into account multiple sets of parameters and different preference scenarios, we obtained the probabilistic ranking of the schemes. To validate the proposed method, we conducted simulation experiments using the k1 model of the baseline test pipe network and compared several preference scenarios. The results demonstrate that the proposed method effectively handles sequential priorities, rankings, and pairwise comparisons, avoiding the use of “black box” in selecting sensor placement scenarios.

关键词

供水管网 / 漏损监测 / 传感器优化布置 / 多准则决策分析

Key words

water supply network / leakage monitoring / optimal sensor layout / multi-criteria decision-making

引用本文

导出引用
王莹, 谭德宝, 叶松, . 面向供水管网漏损监测的传感器优化布置多准则决策分析方法[J]. raybet体育在线 院报. 2024, 41(9): 178-184 https://doi.org/10.11988/ckyyb.20230461
WANG Ying, TAN De-bao, YE Song, et al. Multi-criteria Decision-making Method for Optimal Sensor Layout for Leakage Monitoring of Water Supply Network[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 178-184 https://doi.org/10.11988/ckyyb.20230461
中图分类号: TP18 (人工智能理论)    TV674   

参考文献

[1]
曹徐齐, 阮辰旼. 全球主要城市供水管网漏损率调研结果汇编[J]. 净水技术, 2017, 36(4): 6-14.
(CAO Xu-qi, RUAN Chen-min. Compilation of Investigation on Water Loss Rate of Water Supply Pipelines in Global Major Cities[J]. Water Purification Technology, 2017, 36(4): 6-14. (in Chinese))
[2]
LIEMBERGER R, WYATT A. Quantifying the Global Non-revenue Water Problem[J]. Water Supply, 2019, 19(3): 831-837.
[3]
中华人民共和国住房和城乡建设部. 中国城市建设统计年鉴:2021年[M]. 北京: 中国计划出版社, 2022.
(Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2021 Yearbook of China’s Urban Construction Statistics[M]. Beijing: China Planning Press, 2022. (in Chinese))
[4]
黄哲骢, 李康均, 苏键, 等. 供水管网漏损现状及漏损检测方法研究综述[J]. 科技通报, 2020, 36(4): 10-16, 27.
(HUANG Zhe-cong, LI Kang-jun, SU Jian, et al. A Review of Research on Leak and Leakage Detection Methods[J]. Bulletin of Science and Technology, 2020, 36(4): 10-16, 27. (in Chinese))
[5]
周全, 谢翔, 侯迪波, 等. 基于漏失控制的管网测压点布局方法研究[J]. 控制工程, 2020, 27(7): 1169-1174.
(ZHOU Quan, XIE Xiang, HOU Di-bo, et al. Optimal Sensor Placement in Water Distribution Networks Based on Leakage Control[J]. Control Engineering of China, 2020, 27(7): 1169-1174. (in Chinese))
[6]
KHORSHIDI M S, NIKOO M R, TARAVATROOY N, et al. Pressure Sensor Placement in Water Distribution Networks for Leak Detection Using a Hybrid Information-entropy Approach[J]. Information Sciences, 2020, 516: 56-71.
[7]
王凡. 相依加权网络的鲁棒性研究[D]. 镇江: 江苏大学, 2019.
(WANG Fan. Research on Robustness of Dependent Weighted Network[D]. Zhenjiang: Jiangsu University, 2019. (in Chinese))
[8]
BERTOLA N J, CINELLI M, CASSET S, et al. A Multi-criteria Decision Framework to Support Measurement-system Design for Bridge Load Testing[J]. Advanced Engineering Informatics, 2019, 39: 186-202.
[9]
CORRENTE S, FIGUEIRA J R, GRECO S. The SMAA-PROMETHEE Method[J]. European Journal of Operational Research, 2014, 239(2): 514-522.
[10]
HU Z, CHEN W, CHEN B, et al. Robust Hierarchical Sensor Optimization Placement Method for Leak Detection in Water Distribution System[J]. Water Resources Management, 2021, 35(12): 3995-4008.
[11]
KHORSHIDI M S, NIKOO M R, TARAVATROOY N, et al. Pressure Sensor Placement in Water Distribution Networks for Leak Detection Using a Hybrid Information-entropy Approach[J]. Information Sciences, 2020, 516: 56-71.
[12]
GOULET J A, SMITH I F C. Performance-driven Measurement System Design for Structural Identification[J]. Journal of Computing in Civil Engineering, 2013, 27(4): 427-436.
[13]
TARAVATROOY N, NIKOO M R, HOBBI S, et al. A Novel Hybrid Entropy-clustering Approach for Optimal Placement of Pressure Sensors for Leakage Detection in Water Distribution Systems under Uncertainty[J]. Urban Water Journal, 2020, 17(3): 185-198.
[14]
BERTOLA N J, CINELLI M, CASSET S, et al. A Multi-criteria Decision Framework to Support Measurement-system Design for Bridge Load Testing[J]. Advanced Engineering Informatics, 2019, 39: 186-202.
[15]
PAPADOPOULOU M, RAPHAEL B, SMITH I, et al. Hierarchical Sensor Placement Using Joint Entropy and the Effect of Modeling Error[J]. Entropy, 2014, 16(9): 5078-5101.
[16]
彭畅, 彭森, 吴卿, 等. 基于NSGA-II的给水管网压力监测点多目标优化布置[J]. 中国给水排水, 2019, 35(1): 58-62.
(PENG Chang, PENG Sen, WU Qing, et al. Multi-objective Optimization of Arrangement of Pressure Monitoring Points in Water Distribution Network Based on NSGA-Ⅱ[J]. China Water & Wastewater, 2019, 35(1): 58-62. (in Chinese))
[17]
OSTFELD A, UBER J G, SALOMONS E, et al. The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms[J]. Journal of Water Resources Planning and Management, 2008, 134(6): 556-568.

基金

水利部重大科技项目(SKR-2022001)
国家重点研发计划项目(2019YFC0408805)

编辑: 陈敏
PDF(2066 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map