长江中游护滩服役状态评价体系

陈一梅, 王朋超

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (8) : 23-30.

PDF(3089 KB)
PDF(3089 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (8) : 23-30. DOI: 10.11988/ckyyb.20230435
河湖保护与治理

长江中游护滩服役状态评价体系

作者信息 +

Evaluation System for the Service Status of Beach Protection in Midstream of the Yangtze River

Author information +
文章历史 +

摘要

随着长江航道建设的快速发展,维护管理好在役的航道整治建筑物成为一项重要工作。目前国内针对长江中常见的航道整治建筑物——护滩服役状态的相关研究较少。基于考虑指标模糊性的可拓云理论,建立护滩服役状态评价模型。依据监测信息、护滩历年维护经验和相关规范,构建了评价指标体系,并结合序关系法和熵权法,综合确定指标权重,经模型计算可以得到护滩所隶属的服役状态等级。将该模型应用于长江中游新九水道护滩服役状态评估,评价结果与工程实际情况吻合。验证表明,本文所建立的护滩服役状态评价模型可以正确识别护滩服役状态,指导护滩日常维护工作,推进长江航道养护智能化。

Abstract

With the rapid development of the Yangtze River waterway construction, maintaining and managing the existing waterway regulation buildings has become an important task. Beach protection structures along the Yangtze River, despite their commonality, lack comprehensive research on their operational status in China. This study adopts an extension cloud theory that incorporates indicator fuzziness to establish an evaluation model for beach protection service status. Drawing from monitoring data, decades of maintenance experience and relevant specifications, we developed an evaluation index system. Utilizing a combined approach of order relationship and entropy weighting, we comprehensively determined index weights. Through model calculations, the service status level of beach protection can be accurately assessed. Application of the model to evaluate the service status of beach protection at Xinjiu Waterway in the midstream of the Yangtze River yielded consistent results with actual engineering conditions. Verification confirms the model’s accuracy in correctly identifying beach protection service status, guiding daily maintenance and promoting intelligent maintenance practices along the Yangtze River waterway.

关键词

护滩 / 服役状态评价 / 可拓云模型 / 航道养护 / 智能化 / 长江中游

Key words

beach protection / service status evaluation / extension cloud model / waterway maintenance / intelligent / midstream of the Yangtze River

引用本文

导出引用
陈一梅, 王朋超. 长江中游护滩服役状态评价体系[J]. raybet体育在线 院报. 2024, 41(8): 23-30 https://doi.org/10.11988/ckyyb.20230435
CHEN Yi-mei, WANG Peng-chao. Evaluation System for the Service Status of Beach Protection in Midstream of the Yangtze River[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 23-30 https://doi.org/10.11988/ckyyb.20230435
中图分类号: U617   

参考文献

[1]
黄镇东. 加强长江上游航运发展研究, 服务于“一带一路” 和建设长江经济带的国家战略[J]. 重庆交通大学学报(自然科学版), 2016, 35(增刊1): 1-7.
(HUANG Zhen-dong. Strengthen the Research on Shipping Development in the Upper Reaches of the Yangtze River to Serve the “Belt and Road” and the National Strategy of Building the Yangtze River Economic Belt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(Supp.1):1-7. (in Chinese))
[2]
刘奇峰, 刘怀汉, 陈飞. 长江航道整治护滩结构分析[J]. 水运工程, 2016(1): 119-124.
(LIU Qi-feng, LIU Huai-han, CHEN Fei. Beach Protection Measures in Changjiang Waterway Regulation[J]. Port & Waterway Engineering, 2016(1): 119-124. (in Chinese))
[3]
韩林峰, 王平义, 苏伟. X型系混凝土块软体排水毁量化分析及整治效果评估[J]. 武汉大学学报(工学版), 2017, 50(4): 487-493, 499.
(HAN Lin-feng, WANG Ping-yi, SU Wei. Quantitative Method and Regulating Effect Evaluation of Washout for X-shaped Beach Protection Flexible Mattress[J]. Engineering Journal of Wuhan University, 2017, 50(4): 487-493, 499. (in Chinese))
[4]
王志丰, 陈龙龙, 王亚琼, 等. 基于三角模糊理论的沉管隧道结构服役状态评价方法[J]. 长安大学学报(自然科学版), 2023, 43(1):82-91.
(WANG Zhi-feng, CHEN Long-long, WANG Ya-qiong, et al. Evaluation Method for Health State of Immersed Tunnel Structure in Operation[J]. Journal of Chang’an University (Natural Science Edition), 2023, 43(1):82-91. (in Chinese))
[5]
朱兴林, 姚亮, 叶拉森. 基于ANP-可拓云模型的公路枢纽城市载体竞争力评价[J]. 公路, 2021, 66(10):235-242.
(ZHU Xing-lin, YAO Liang, YE La-sen. Evaluation of Competitiveness of Highway Hub Cities Carrier Based on ANP and Extension Cloud Model[J]. Highway, 2021, 66(10): 235-242. (in Chinese))
[6]
徐喆. 基于数据驱动的区域中小跨径桥梁服役状态网级评估方法研究[D]. 重庆: 重庆交通大学, 2022.
(XU Zhe. Network-level Data-Driven Assessment Method for Service Condition of Regional Small-and Medium-span Bridges[D]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese))
[7]
WANG D, LIU D, DING H, et al. A Cloud Model-based Approach for Water Quality Assessment[J]. Environmental Research, 2016, 148: 24-35.
Water quality assessment entails essentially a multi-criteria decision-making process accounting for qualitative and quantitative uncertainties and their transformation. Considering uncertainties of randomness and fuzziness in water quality evaluation, a cloud model-based assessment approach is proposed. The cognitive cloud model, derived from information science, can realize the transformation between qualitative concept and quantitative data, based on probability and statistics and fuzzy set theory. When applying the cloud model to practical assessment, three technical issues are considered before the development of a complete cloud model-based approach: (1) bilateral boundary formula with nonlinear boundary regression for parameter estimation, (2) hybrid entropy-analytic hierarchy process technique for calculation of weights, and (3) mean of repeated simulations for determining the degree of final certainty. The cloud model-based approach is tested by evaluating the eutrophication status of 12 typical lakes and reservoirs in China and comparing with other four methods, which are Scoring Index method, Variable Fuzzy Sets method, Hybrid Fuzzy and Optimal model, and Neural Networks method. The proposed approach yields information concerning membership for each water quality status which leads to the final status. The approach is found to be representative of other alternative methods and accurate.Copyright © 2016 Elsevier Inc. All rights reserved.
[8]
张婕. 柔性护滩结构水力特性及边缘冲刷机理研究[D]. 重庆: 重庆交通大学, 2021.
(ZHANG Jie. Hydraulic Characteristics and Scour Mechanism of Flexible Beach Protection Structure[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese))
[9]
马爱兴, 曹民雄, 王秀红, 等. 长江中下游航道整治护滩带损毁机理分析及应对措施[J]. 水利水运工程学报, 2011(2): 32-38.
(MA Ai-xing, CAO Min-xiong, WANG Xiu-hong, et al. Failure Mechanism and Relevant Measures for Beach Protection Band in Lower-middle Reaches of Yangtze River[J]. Hydro-Science and Engineering, 2011(2): 32-38. (in Chinese))
[10]
王平义. 长江中游航道整治建筑物稳定性研究[M]. 北京: 科学出版社, 2016: 23-27.
(WANG Ping-yi. Stability of Waterway Regulation Buildings in the Middle Reaches of the Yangtze River[M]. Beijing: Science Press, 2016: 23-27. (in Chinese))
[11]
李彪, 涂琳. 长江中游周天河段航道整治建筑物3#、4#护滩带损毁原因及维护对策[J]. 中国水运航道科技, 2017(5): 8-15.
(LI Biao, TU Lin. Causes and Maintenance Countermeasures of Damage of 3# and 4# Beach Belts of Waterway Regulation Buildings in Zhoutian Reach of the Middle Reaches of the Yangtze River[J]. China Water Transportation (Science & Technology for Waterway), 2017(5): 8-15. (in Chinese))
[12]
陈立, 朱一松, 张为, 等. 护滩带边缘局部冲刷深度计算公式初步研究[J]. 泥沙研究, 2017, 42(2): 61-66.
(CHEN Li, ZHU Yi-song, ZHANG Wei, et al. Study on Local Scour Depth along the Edge of Beach Protection Belts[J]. Journal of Sediment Research, 2017, 42(2): 61-66. (in Chinese))
[13]
王晓玲, 戴林瀚, 吕鹏, 等. 基于DSR-可拓云的渗流安全综合评价研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(1): 52-61.
(WANG Xiao-ling, DAI Lin-han, Peng, et al. Study on Comprehensive Evaluation Model of Seepage Safety Based on DSR-extension Cloud[J]. Journal of Tianjin University (Science and Technology), 2019, 52(1): 52-61. (in Chinese))
[14]
刘怀汉, 付中敏, 陈婧, 等. 长江中游航道整治建筑物护滩带稳定性研究[C]// 中国水利学会第三届青年科技论坛论文集.成都, 2007年10月12—13日:300-304.
(LIU Huai-han, FU Zhong-min, CHEN Jing, et al. Stability of Beach Protection for Waterway Regulation Buildings in the Middle Reaches of the Yangtze River[C]// Proceedings of the Third Youth Scientific Symposium of Chinese Hydraulic Engineering Society. Chengdu, October 12-13, 2007: 300-304. (in Chinese))
[15]
葛瑶, 陈长英. 潜没式治河建筑物水流特性研究综述[J]. raybet体育在线 院报, 2015, 32(5): 66-71.
摘要
针对潜没式治河建筑物(潜坝、潜没导板、潜没圆柱体、护滩带等)附近的复杂水流形态,结合国内外的研究成果,对其影响下的流速分布、剪应力分布、涡流结构、紊动动能、比尺效应、分离区、糙率和潜没度等进行了综述,讨论了其冲刷、壅水等机理。相关研究结果表明:潜没建筑物对水流的扰动程度决定了其水流特性,其诱导的漩涡及回流对水流结构产生巨大影响,增大了局部河床阻力,使得综合糙率重新分布。进而指出现有研究成果及其不足之处,并结合已有成果提出展望,为后续的工程及研究工作提供参考。
(GE Yao, CHEN Chang-ying. Research Advances in Flow Characteristics near Submerged River Regulation Structures[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 66-71. (in Chinese))
On the basis of research achievements in China and abroad, we made a review on the complex flow characteristics (flow velocity, shear stress distribution, eddy flow structure, turbulent kinetic energy, scale effect, separation zone, roughness coefficient and immersion ratio) near submerged river improvement structures (submerged groyne(dikes), vanes, cylindrical and beach-protection belt). We also discussed the mechanism of scouring and backwater effects. Research results indicate that the flow characteristics are determined by the disturbance of these submerged structures to flow. The induced eddy flow and backwater greatly affect the flow structure, increase local bed resistance, and redistribute the comprehensive roughness coefficient. Finally we present the shortcomings of the achievements and put forward prospects to future research.
[16]
彭张林, 张强, 杨善林. 综合评价理论与方法研究综述[J]. 中国管理科学, 2015, 23(增刊1): 245-256.
(PENG Zhang-lin, ZHANG Qiang, YANG Shan-lin. Review on the Theory and Method of Comprehensive Evaluation[J]. Chinese Journal of Management Science, 2015, 23(Supp.1):245-256. (in Chinese))
[17]
WANG S, DONG F, ZHANG Z, et al. Multi-index Dominant Grouping of Rock Mass Discontinuities Based on the Combined Weighting Method: a Case Study for the Huayang Tunnel[J]. Tunnelling and Underground Space Technology, 2023, 139: 105211.

基金

国家重点研发计划项目(2018YFB1600400)

编辑: 刘运飞
PDF(3089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map