基于双重介质渗流-应力耦合模型的高压压水试验渗透参数反演

王锦国, 韩智颖, 程伟, 黄瑞瑞, 尤琳, 杨蕴

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (8) : 113-119.

PDF(2766 KB)
PDF(2766 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (8) : 113-119. DOI: 10.11988/ckyyb.20230554
岩土工程

基于双重介质渗流-应力耦合模型的高压压水试验渗透参数反演

作者信息 +

Inversion of Permeability in High Pressure Packer Test under Hydro-Mechanical Coupling of Dual Media

Author information +
文章历史 +

摘要

高压压水试验过程中岩体易发生水力劈裂产生裂隙,岩体内部孔隙、裂隙双重导水,渗流场和应力场相互作用,导致岩体渗透参数的时空变异性。基于高压压水试验反演渗透参数需考虑双重介质渗流-应力耦合作用下产生裂隙前后渗透系数的变化规律,利用渗流-应力耦合数值模型结合工程现场高压压水试验数据进行参数反演,计算得到不同压力阶段下灰岩岩体渗透率。主要结论如下:发生水力劈裂前,随着注液压力的增大,渗透率及孔隙水压力在不同压力阶段之间分界明显,渗透率反演值与规程公式计算值相近;发生水力劈裂后,岩体渗透率增大约2倍,孔隙介质渗透率和通过的流量出现陡减现象。

Abstract

Hydraulic fracturing easily occurs in rock masses under high-pressure packer tests, involving dual water conduction via pores and cracks. This interaction between the seepage and stress fields results in spatial-temporal variations in rock mass permeability parameters. For accurate permeability parameter inversion during high-pressure packer tests, it is recommended to consider the change in permeability coefficient before and after fracture occurrence under hydro-mechanical coupling of dual media. A hydro-mechanical coupling numerical model is employed to simulate high-pressure packer tests, and parameter inversion is conducted using on-site test data to calculate limestone permeability across different pressure stages. Key findings include: before hydraulic fracturing, as injection pressure increases, permeability and pore water pressure sees distinct boundaries among different pressure stages, with inverted permeability closely aligning with specified formula values. After hydraulic fracturing, rock mass permeability increases by about 2 times, accompanied by sharp declines in matrix pore medium permeability and flow rates.

关键词

高压压水试验 / 双重介质 / 渗流-应力耦合 / 渗透率 / 水力劈裂

Key words

high-pressure packer test / dual media / seepage-stress coupling / permeability / hydraulic fracturing

引用本文

导出引用
王锦国, 韩智颖, 程伟, . 基于双重介质渗流-应力耦合模型的高压压水试验渗透参数反演[J]. raybet体育在线 院报. 2024, 41(8): 113-119 https://doi.org/10.11988/ckyyb.20230554
WANG Jin-guo, HAN Zhi-ying, CHENG Wei, et al. Inversion of Permeability in High Pressure Packer Test under Hydro-Mechanical Coupling of Dual Media[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 113-119 https://doi.org/10.11988/ckyyb.20230554
中图分类号: P642.3   

参考文献

[1]
刘明明, 胡少华, 陈益峰, 等. 基于高压压水试验的裂隙岩体非线性渗流参数解析模型[J]. 水利学报, 2016, 47(6): 752-762.
(LIU Ming-ming, HU Shao-hua, CHEN Yi-feng, et al. An Analytical Model for Nonlinear Flow Parameters of Fractured Rock Masses Based on High Pressure Packer Tests[J]. Journal of Hydraulic Engineering, 2016, 47(6): 752-762. (in Chinese))
[2]
殷黎明, 杨春和, 罗超文, 等. 高压压水试验在深钻孔中的应用[J]. 岩土力学, 2005, 26(10): 1692-1694.
(YIN Li-ming, YANG Chun-he, LUO Chao-wen, et al. Application of High Water-pressure Test to Deep Borehole[J]. Rock and Soil Mechanics, 2005, 26(10): 1692-1694. (in Chinese))
[3]
NB/T 35113—2018, 水电工程钻孔压水试验规程[S]. 北京: 中国电力出版社, 2018.
(NB/T 35113—2018, Hydropower Engineering Borehole Pressurized Water Test Procedures[S]. Beijing: China Electric Power Press, 2018. (in Chinese))
[4]
黄勇, 周志芳, 傅胜, 等. 基于高压压水试验的岩体透水率变化研究[J]. 工程地质学报, 2013, 21(6):828-834.
(HUANG Yong, ZHOU Zhi-fang, FU Sheng, et al. Study on Variation of Rock Mass Permeability with High Pressure Permeability Test[J]. Journal of Engineering Geology, 2013, 21(6):828-834. (in Chinese))
[5]
王化龙, 李冲. 钻孔常规压水和高压压水试验成果研究[J]. 云南水力发电, 2014, 30(6): 11-15.
(WANG Hua-long, LI Chong. The Study on the Results of the Borehole Routine Water Pressure Test and the High Pressure Water Pressure Test[J]. Yunnan Water Power, 2014, 30(6): 11-15. (in Chinese))
[6]
魏宁, 李金都, 傅旭东. 钻孔高压压水试验的数值模拟[J]. 岩石力学与工程学报, 2006, 25(5): 1037-1042.
(WEI Ning, LI Jin-du, FU Xu-dong. Numerical Simulation of High-pressure Injection Experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 1037-1042. (in Chinese))
[7]
蒋中明, 傅胜, 李尚高, 等. 高压引水隧洞陡倾角断层岩体高压压水试验研究[J]. 岩石力学与工程学报, 2007, 26(11): 2318-2323.
(JIANG Zhong-ming, FU Sheng, LI Shang-gao, et al. High Pressure Permeability Test on Hydraulic Tunnel with Steep Obliquity Faults under High Pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2318-2323. (in Chinese))
[8]
孟如真, 胡少华, 陈益峰, 等. 高渗压条件下基于非达西流的裂隙岩体渗透特性研究[J]. 岩石力学与工程学报, 2014, 33(9):1756-1764.
(MENG Ru-zhen, HU Shao-hua, CHEN Yi-feng, et al. Permeability of Non-Darcian Flow in Fractured Rock Mass under High Seepage Pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9):1756-1764. (in Chinese))
[9]
黄勇, 周麟桐, 周志芳. 高水压力作用下裂隙岩体渗透性的变化研究[J]. 工程地质学报, 2018, 26(6): 1433-1438.
(HUANG Yong, ZHOU Lin-tong, ZHOU Zhi-fang. Equations for Permeability Variation of Fractured Rock Mass under High Water Pressure[J]. Journal of Engineering Geology, 2018, 26(6): 1433-1438. (in Chinese))
[10]
BIOT M A. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid[J]. Journal of Applied Physics, 1955, 26(2): 182-185.
[11]
王瑞, 沈振中, 陈孝兵. 基于COMSOL Multiphysics的高拱坝渗流-应力全耦合分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3197-3204.
(WANG Rui, SHEN Zhen-zhong, CHEN Xiao-bing. Full Coupling Analysis of Seepage and Stress of High Arch Dam Based on COMSOL Multiphysics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Supp.2):3197-3204. (in Chinese))
[12]
蒋中明, 冯树荣, 陈胜宏, 等. 裂隙岩体高压压水试验水-岩耦合过程数值模拟[J]. 岩土力学, 2011, 32(8):2500-2506.
(JIANG Zhong-ming, FENG Shu-rong, CHEN Sheng-hong, et al. Numerical Simulation of Hydro-mechanical Coupling Process of Fractured Rock Mass during High Pressure Permeability Test[J]. Rock and Soil Mechanics, 2011, 32(8):2500-2506. (in Chinese))
[13]
ZHANG K, XUE Y, XU Z, et al. Numerical Study of Water Inflow into Tunnels in Stratified Rock Masses with a Dual Permeability Model[J]. Environmental Earth Sciences, 2021, 80(7): 260.
[14]
黄震, 姜振泉, 孙强, 等. 深部巷道底板岩体渗透性高压压水试验研究[J]. 岩土工程学报, 2014, 36(8):1535-1543.
(HUANG Zhen, JIANG Zhen-quan, SUN Qiang, et al. High-pressure Water Injection Tests on Permeability of Deep Rock Mass under Tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1535-1543. (in Chinese))
[15]
BASIRAT F, TSANG C F, TATOMIR A, et al. Hydraulic Modeling of Induced and Propagated Fractures: Analysis of Flow and Pressure Data from Hydromechanical Experiments in the COSC-1 Deep Borehole in Crystalline Rock near Åre, Sweden[J]. Water Resources Research, 2021, DOI:10.1029/2020WR029484.
[16]
RUTQVIST J, NOORISHAD J, TSANG C F, et al. Determination of Fracture Storativity in Hard Rocks Using High-pressure Injection Testing[J]. Water Resources Research, 1998, 34(10): 2551-2560.
[17]
LOUIS C. Rock Hydraulics[M]. Vienna: Springer, 1972.
[18]
张新敏, 蒋中明, 冯树荣, 等. 岩体高压压水试验的渗透系数取值方法探讨[J]. 水力发电学报, 2011, 30(1):155-159.
(ZHANG Xin-min, JIANG Zhong-ming, FENG Shu-rong, et al. Study on the Determination of Permeability Coefficient of Fractured Rock Mass under High Pressure Test Condition[J]. Journal of Hydroelectric Engineering, 2011, 30(1):155-159. (in Chinese))
[19]
倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特性研究[J]. 岩石力学与工程学报, 2012, 31(3):488-498.
(NI Shao-hu, HE Shi-hai, WANG Xiao-gang, et al. Hydraulic Properties of Fractured Rock Mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):488-498. (in Chinese))

基金

江苏省自然科学基金项目(BK20221507)

编辑: 占学军
PDF(2766 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map