为揭示黄土高填方场地的降雨入渗规律,在延安某黄土高填方场地建立监测站,对天然降雨入渗条件下28 m深度范围内的土体含水率进行为期31个月的连续监测,结合降雨量、蒸发量及气温数据分析压实黄土中的水分迁移规律。结果表明:地面下3.5 m是大气影响深度,随降雨量和蒸发量变化,土体含水率变化存在明显波峰与波谷,并呈周年性变化趋势;地面下1.0 m是大气急剧影响深度,当单日降雨量<29 mm/d时,土体含水率在周年性变化趋势背景下波动较小,当单日降雨量>29 mm/d后土体含水率出现跳跃式骤升;降雨量越大,土体含水率的增幅越大,降雨持续的时间越长,水分迁移入渗的深度越大,监测期内降雨最大入渗深度为6.0~7.0 m。
Abstract
To unveil the rainfall infiltration patterns at a loess deep filled site, a monitoring station was established in Yan’an to continuously monitor the soil moisture content within a 28 m depth over 31 months under natural rainfall conditions. The water migration within compacted loess was scrutinized based on rainfall, evaporation, and temperature data. Results indicate that atmospheric influence extends to a depth of 3.5 m. With the change of rainfall and evaporation, soil water content exhibits obvious peaks and troughs and annual trend. At 1.0 m depth, atmospheric influence is more pronounced. Soil moisture content shows slight fluctuations below 29 mm/d daily rainfall, followed by sharp increases beyond this threshold. Greater rainfall intensity and duration lead to deeper water migration and infiltration, with a maximum depth observed between 6.0-7.0 m during the monitoring period.
关键词
黄土 /
高填方场地 /
含水率 /
降雨 /
水分迁移
Key words
loess /
deep filled ground /
moisture content /
rainfall /
water migration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱才辉, 李 宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293-301. (ZHU Cai-hui, LI Ning, LIU Ming-zhen, et al. Spatiotemporal Laws of Post-construction Settlement of Loess-filled Foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293-301.(in Chinese))
[2] 于永堂, 郑建国. 黄土高填方场地工后沉降预测新模型[J]. 西南交通大学学报, 2022, 57(6): 1268-1276, 1292. (YU Yong-tang, ZHENG Jian-guo. New Prediction Model for Post-construction Settlement of Loess High Fill Site[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1268-1276, 1292.(in Chinese))
[3] 刘新星.延安新机场黄土高填方土工布加固机理试验研究[D].西安:西安理工大学,2015.(LIU Xin-xing. Experimental Study on Geosynthetics Reinforcement for Loess High Filled Ground at Yan’an New Airport[D]. Xi’an: Xi’an University of Technology, 2015.(in Chinese))
[4] 于永堂,郑建国,张继文,等.黄土高填方场地裂缝的发育特征及分布规律[J].中国地质灾害与防治学报,2021,32(4):85-92.(YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, et al. Development and Distribution Characteristics of Ground Fissures in High Loess Filled Ground[J].The Chinese Journal of Geological Hazard and Control,2021,32(4):85-92.(in Chinese))
[5] 张继文, 于永堂, 李 攀, 等. 黄土削峁填沟高填方地下水监测与分析[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 477-483. (ZHANG Ji-wen, YU Yong-tang, LI Pan, et al. Groundwater Monitoring and Analysis of High Fill Foundation in Loess Hilly-gully Region[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2016, 48(4): 477-483.(in Chinese))
[6] 刘 林, 罗 汀, 陈 栋, 等. 考虑应力历史影响的高填方蠕变沉降计算[J]. 工业建筑, 2016, 46(9): 32-36. (LIU Lin, LUO Ting, CHEN Dong, et al. The Creep Settlement Calculation of High Embankment Considering Stress History[J]. Industrial Construction, 2016, 46(9): 32-36.(in Chinese))
[7] 郭剑峰,陈正汉,郭 楠.延安新区高填方工程的变形与水分迁移耦合分析[J].岩土工程学报,2021,43(增刊1):143-148.(GUO Jian-feng,CHEN Zheng-han,GUO Nan.Coupling Analysis of Deformation and Moisture Migration of High Fill Project in Yan’an New Area[J]. Chinese Journal of Geotechnical Engineering,2021,43(Supp.1):143-148.(in Chinese))
[8] 丁 勇. 人工降雨模拟作用下的黄土高边坡稳定性研究[D]. 西安: 西北大学, 2011. (DING Yong. Study on the Stability of High Loess Slope under Artificial Rainfall Simulation[D].Xi’an: Northwest University, 2011. (in Chinese))
[9] 杜光波, 倪万魁. 降雨条件下黄土斜坡的入渗特征分析[J]. 安全与环境学报, 2017, 17(4): 1387-1391. (DU Guang-bo, NI Wan-kui. Status-in-situ Observation and Analysis for the Loess Landslide under the Impact of the Rainfall[J]. Journal of Safety and Environment, 2017, 17(4): 1387-1391.(in Chinese))
[10]霍志涛, 李 高, 王 力, 等. 降雨型滑坡浅层滑动对土体含水率变化的响应[J]. raybet体育在线
院报, 2022, 39(7): 110-117, 125. (HUO Zhi-tao, LI Gao, WANG Li, et al. Response of Shallow Sliding of Rainfall-induced Landslide to the Change of Soil Moisture Content[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(7): 110-117, 125.(in Chinese))
[11]张常亮, 李 萍, 李同录, 等. 黄土中降雨入渗规律的现场监测研究[J]. 水利学报, 2014, 45(6): 728-734. (ZHANG Chang-liang, LI Ping, LI Tong-lu, et al. In-situ Observation on Rainfall Infiltration in Loess[J]. Journal of Hydraulic Engineering, 2014, 45(6): 728-734.(in Chinese))
[12]李 萍, 李同录, 付昱凯, 等. 非饱和黄土中降雨入渗规律的现场监测研究[J]. 中南大学学报(自然科学版), 2014, 45(10): 3551-3560. (LI Ping, LI Tong-lu, FU Yu-kai, et al. In-situ Observation on Regularities of Rainfall Infiltration in Loess[J]. Journal of Central South University (Science and Technology), 2014, 45(10): 3551-3560.(in Chinese))
[13]朱才辉, 李 宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845-854. (ZHU Cai-hui, LI Ning. Moistening Effects of High-fill Embankment Due to Rainfall Infiltration in Loess Gully Region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854.(in Chinese))
[14]GB/T 50123—2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019. (GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2019. (in Chinese))
[15]于永堂, 张继文, 郑建国, 等. 驻波比法测定黄土含水量的标定试验研究[J]. 岩石力学与工程学报, 2015, 34(7): 1462-1469. (YU Yong-tang, ZHANG Ji-wen, ZHENG Jian-guo, et al. Calibration of standing-wave Ratio Sensors for Determining Water Content of Loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1462-1469.(in Chinese))
基金
陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-086);陕西省重点研发计划项目(2023-YBSF-499);国家自然科学基金项目(42072302)