三峡区间面积在长江上游的流域面积占比5.6%,但在三峡入库洪水组成中,区间形成的洪水占比可达10%以上,可见区间暴雨洪水是水库防洪安全必须考量的重要因素。采用2007—2011年三峡入库流量,上游边界寸滩和武隆站实测流量资料,建立了基于HEC-HMS的三峡区间洪水模拟模型,用于分析区间暴雨洪水与入库洪水的关系。根据入库洪水来源组成分析和资料特点,提出分类调参、分期检验的区间洪水建模方案:对以上游来水为主型洪水,率定汇流参数;对区间降水贡献较大型洪水,率定产流参数;对2012年以后的模拟洪水过程,以三峡水库运行实录发布的洪水过程线为比对基准。结果表明:模型精度良好,率定期和验证期洪峰流量相对误差在±20%以内,峰现时间误差<3 h;经与长江三峡工程运行实录比对,模型适用于模拟2012年后的三峡入库洪水过程。以20160626场次洪水为典型,分析该场区间洪水对入库洪水的峰值贡献率达27.2%,使得峰现时间提前16 h。研究成果可用于三峡区间洪水的影响研究,也可作为区间流域洪水模拟模型建模方案的技术参考。
Abstract
The Three Gorges Interval (TGI) accounts for 5.6% of the upper Yangtze River basin area. However, floods originating from this region constitute over 10% of the floods in the Three Gorges Reservoir (TGR). Hence, heavy rainfall-induced flood is an important factor that must be taken into consideration in ensuring reservoir flood control safety. Based on TGR inflow data during 2007-2011 and flow data from upstream Cuntan and Wulong stations, we developed a HEC-HMS flood simulation model to examine the correlation between rainstorm floods in the TGI and inflow floods into the reservoir. We proposed an interval flood modeling scheme based on classified parameter adjustment and staged testing according to flood sources: for floods primarily driven by upstream inflows, the flood confluence parameters were calibrated; for floods predominantly influenced by regional precipitation,the flow yield parameters were calibrated. To validate the model, we compared simulated flood processes post-2012 with operational records of the TGR, demonstrating model accuracy with the relative errors of peak flow rate in calibration and verification periods within ±20% and peak time errors below 3 hours. Comparisons with Three Gorges Project (TGP) operation records confirmed the model’s suitability for simulating post-2012 TGR flood processes. Examining the flood event on June 26, 2016, as a representative case, we observed a significant 27.2% contribution rate of flood peak within the reservoir, with a peak time advance of 16 hours. These findings facilitate understanding TGR flood impacts and serve as a technical reference for flood modeling schemes within the basin region.
关键词
三峡区间 /
洪水过程模拟 /
HEC-HMS模型 /
参数率定
Key words
Three Gorges region /
flood process simulation /
HEC-HMS model /
parameter calibration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王佰伟,田富强,胡和平.三峡区间入流对三峡库区洪峰的影响分析[J].中国科学:技术科学,2011,41(7):981-991.(WANG Bai-wei, TIAN Fu-qiang, HU He-ping. Analysis of the Influence of Inflow in the Three Gorges Area on Flood Peak in the Three Gorges Reservoir Area[J]. Scientia Sinica (Technologica), 2011, 41(7): 981-991.(in Chinese))
[2] XIAO C, YU R, FU Y. Precipitation Characteristics in the Three Gorges Dam Vicinity[J]. International Journal of Climatology, 2010, 30(13): 2021-2024.
[3] ZHANG T, WANG Y, LIU B, et al. Variation of Hourly Extreme Precipitation in the Three Gorges Reservoir Region, China, from the Observation Record[J]. Water, 2021, 13(20): 2855.
[4] 李 哲,杨大文,田富强.基于地面雨情信息的长江三峡区间洪水预报研究[J].水力发电学报,2013,32(1):44-49,62.(LI Zhe, YANG Da-wen, TIAN Fu-qiang. Flood Forecast for Three Gorges Region of the Yangtze Based on Ground-observed Rainfall[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 44-49, 62.(in Chinese))
[5] 张天宇, 王雨潇, 孙营营, 等. 1998—2020年三峡库区小时极端降水时空变化特征分析[J]. 高原气象, 2023, 42(1): 108-115. (ZHANG Tian-yu, WANG Yu-xiao, SUN Ying-ying, et al. Temporal and Spatial Variation Characteristics of Hourly Extreme Precipitation in the Three Gorges Region in 1998-2020[J]. Plateau Meteorology, 2023, 42(1): 108-115.(in Chinese))
[6] 王雨潇, 孙营营, 张天宇, 等. 1998-2020年三峡库区最大1小时降水的时空变化特征[J].河海大学学报(自然科学版),2023,51(1): 10-18.(WANG Yu-xiao,SUN Ying-ying,ZHANG Tian-yu,et al. Spatial and Temporal Variation of Maximum 1-hour Precipitation in the Three Gorges Reservoir Area from 1998 to 2020 [J]. Journal of Hohai University (Natural Science),2023,51(1): 10-18.
[7] 张洪刚, 郭生练, 周 芬, 等. 考虑预见期降水的三峡水库区间洪水预报模型研究[J]. raybet体育在线
院报, 2005, 22(1): 9-12, 20. (ZHANG Hong-gang, GUO Sheng-lian, ZHOU Fen, et al. Flood Forecasting Model for Three Gorges Reservoir Intervening Basin by Considering Precipitation Prediction[J]. Journal of Yangtze River Scientific Research Institute, 2005, 22(1): 9-12, 20.(in Chinese))
[8] 许继军, 杨大文, 蔡治国, 等. 基于分布式水文模拟的三峡区间洪水预报(I): 模型构建及验证[J]. 水文, 2008, 28(1): 32-37. (XU Ji-jun, YANG Da-wen, CAI Zhi-guo, et al. Flood Forecasting in the Three-gorge Reach Based on a Distributed Hydrological Model(I): Modeling and Calibration[J]. Journal of China Hydrology, 2008, 28(1): 32-37.(in Chinese))
[9] 王佰伟, 李 哲, 田富强, 等. 基于物理机制的分布式水文模型对三峡区间径流的模拟[J]. 清华大学学报(自然科学版), 2011, 51(2): 209-214, 219. (WANG Bai-wei, LI Zhe, TIAN Fu-qiang, et al. Physically Distributed Hydrological Model Simulations of Runoff in the Three Gorges Region[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(2): 209-214, 219.(in Chinese))
[10] HOERMANN G,KOEPLIN N,CAI Q,et al. Using a Simple Model as a Tool to Parameterise the SWAT Model of the Xiangxi River in China[J/OL]. Quaternary International,2009,208: 116-120.
[11] 石 朋, 芮孝芳, 瞿思敏, 等. 一个网格型松散结构分布式水文模型的构建[J]. 水科学进展, 2008, 19(5): 662-670. (SHI Peng, RUI Xiao-fang, QU Si-min, et al. Development and Application of a Grid-based Distributed Hydrological Model[J]. Advances in Water Science, 2008, 19(5): 662-670.(in Chinese))
[12] 中国长江三峡集团有限公司. 长江三峡工程运行实录[R].宜昌:中国长江三峡集团公司,2012-2018年.(China Three Gorges Corporation. Operation Record of the Three Gorges Project of the Yangtze River[R].Yichang:China Three Gorges Corporation,2012-2018.(in Chinese))
[13] 吴天蛟. 三峡区间入流对库区洪水影响研究[D]. 北京: 清华大学, 2014. (WU Tian-jiao. Research on the Contribution of Lateral Inflow to Floods in Three Gorges Reservoir[D].Beijing: Tsinghua University, 2014. (in Chinese))
[14] 李向新. HEC-HMS水文建模系统原理·方法·应用[M]. 北京: 中国水利水电出版社, 2015. (LI Xiang-xin. Principle, Method and Application of HEC-HMS Hydrological Modeling System[M]. Beijing: China Water Power Press, 2015.(in Chinese))
[15] 程 旭,马细霞,王武森,等.HEC-HMS模型参数区域化在河南省小流域适用性研究[J].水文,2022,42(1):40-46,102.(CHENG Xu,MA Xi-xia,WANG Wu-sen,et al. Applicability Research of HEC-HMS Model Parameter Regionalization in Small Basin of Henan Province[J]. Journal of China Hydrology,2022,42(1):40-46,102.(in Chinese))
[16] 田 竞, 夏 军, 张艳军, 等. HEC-HMS模型在官山河流域的应用研究[J]. 武汉大学学报(工学版), 2021, 54(1): 8-14. (TIAN Jing, XIA Jun, ZHANG Yan-jun, et al. Application of HEC-HMS Model in the Guanshan River Basin[J]. Engineering Journal of Wuhan University, 2021, 54(1): 8-14.(in Chinese))
[17] 罗清元, 侯东儒, 刘丽娜, 等. HEC-HMS模型与MFPM模型在暴雨洪水预报中的应用比较[J]. 水电能源科学, 2022, 40(8): 70-73, 87. (LUO Qing-yuan, HOU Dong-ru, LIU Li-na, et al. Application Comparison of HEC-HMS Model and MFPM Model in Rainstorm and Flood Forecasting[J]. Water Resources and Power, 2022, 40(8): 70-73, 87.(in Chinese))
[18] 常凊睿, 唐颖复, 王 璐, 等. 山丘区小流域下垫面数据精度对HEC-HMS水文模拟的影响研究[J]. 中国水利水电科学研究院学报, 2019, 17(6): 470-477. (CHANG Qing-rui, TANG Ying-fu, WANG Lu, et al. Influence Analysis of Accuracy of Underlying Surface Data on Simulation Results of HEC-HMS Hydrological Model in Mountainous Areas[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(6): 470-477.(in Chinese))
基金
国家重点研发计划项目(2021YFB3900601);中央高校基本科研业务费项目(B220201028);三峡气候监测项目(SK2021015)