循环压缩作用下铁尾矿砂混凝土变形破坏试验研究

丁浩珉

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (5) : 195-202.

PDF(7317 KB)
PDF(7317 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (5) : 195-202. DOI: 10.11988/ckyyb.20221688
水工结构与材料

循环压缩作用下铁尾矿砂混凝土变形破坏试验研究

  • 丁浩珉
作者信息 +

Deformation and Failure of Iron Tailings Sand Concrete under Cyclic Compression

  • DING Hao-min
Author information +
文章历史 +

摘要

为了研究循环压缩对不同铁尾矿砂掺量的混凝土疲劳损伤的影响,对铁尾矿砂混凝土开展了拌合物性能和变幅循环压缩试验。结果表明:铁尾矿砂混凝土吸水率均大于普通混凝土且吸水率随掺量增加而增大;铁尾矿砂掺量在40%以内时混凝土流动性较好,且压力泌水率属于可泵送空间;掺有铁尾矿砂的混凝土的循环受压应力-应变曲线由密变疏且变形相对普通混凝土较小;加载变形模量在临近破坏时会突然降低,总输入能和弹性应变能增长速率随着循环受压次数的增加而增大,而耗散能先缓慢增大之后迅速增大。

Abstract

To explore the impact of cyclic compression on fatigue damage in concrete with varying iron tailings sand content, we conducted mixture performance assessments and variable-amplitude cyclic compression tests on iron tailings sand concrete. Our findings reveal that the water absorption of iron tailings sand concrete surpasses that of ordinary concrete, escalating with dosage increments. Below a 40% iron tailings sand content, concrete exhibits enhanced fluidity and maintains a pumpable state in terms of pressure bleeding rate. The stress-strain curve of iron tailings sand concrete during cyclic compression transitions from dense to sparse, with deformation levels lower than those of ordinary concrete. Near failure, the loading deformation modulus experiences a sudden decline. Total input energy and elastic strain energy exhibit accelerated growth rates with increasing cyclic compression times, while dissipation energy shows a gradual increase followed by a rapid surge.

关键词

铁尾矿砂 / 混凝土 / 拌合物性能 / 变幅循环压缩

Key words

iron tailings sand / concrete / mixture performance / variable-amplitude cyclic compression

引用本文

导出引用
丁浩珉. 循环压缩作用下铁尾矿砂混凝土变形破坏试验研究[J]. raybet体育在线 院报. 2024, 41(5): 195-202 https://doi.org/10.11988/ckyyb.20221688
DING Hao-min. Deformation and Failure of Iron Tailings Sand Concrete under Cyclic Compression[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(5): 195-202 https://doi.org/10.11988/ckyyb.20221688
中图分类号: TU521.1   

参考文献

[1] 高宗军,李怀岭,李华民.河砂资源过度开采对水环境的破坏暨环境地质问题:以山东大汶河河砂开采为例[J].中国地质灾害与防治学报,2003,14(3):96-99.(GAO Zong-jun, LI Huai-ling, LI Hua-min. The Negative Effects on Water Environment and Environ-geological Problems from Excessive Exploitation of River Sand Resources[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(3): 96-99.(in Chinese))
[2] CORREIA J R,DE BRITO J,PEREIRA A S.Effects on Concrete Durability of Using Recycled Ceramic Aggregates[J]. Materials and Structures, 2006, 39(2): 169-177.
[3] AGGARWAL Y, SIDDIQUE R. Microstructure and Properties of Concrete Using Bottom Ash and Waste Foundry Sand as Partial Replacement of Fine Aggregates[J]. Construction and Building Materials, 2014, 54: 210-223.
[4] ANASTASIOU E, GEORGIADIS FILIKAS K, STEFANIDOU M. Utilization of Fine Recycled Aggregates in Concrete with Fly Ash and Steel Slag[J]. Construction and Building Materials, 2014, 50: 154-161.
[5] 崔孝炜, 倪 文, 任 超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J]. 材料研究学报, 2017, 31(9): 687-694. (CUI Xiao-wei, NI Wen, REN Chao. Hydration Mechanism of all Solid Waste Cementitious Materials Based on Steel Slag and Blast Furnace Slag[J]. Chinese Journal of Materials Research, 2017, 31(9): 687-694.(in Chinese))
[6] LI C, SUN H, BAI J, et al. Innovative Methodology for Comprehensive Utilization of Iron Ore Tailings: Part 1. The Recovery of Iron from Iron Ore Tailings Using Magnetic Separation after Magnetizing Roasting[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 71-77.
[7] 吕兴栋,刘战鳌,朱志刚,等.尾矿作为水泥和混凝土原材料综合利用研究进展[J].材料导报,2018,32(增刊2):452-456.(LYU Xing-dong,LIU Zhan-ao,ZHU Zhi-gang,et al. Research Progress on Comprehensive Utilization of Tailings as Raw Materials of Cement and Concrete[J]. Materials Reports,2018,32(Supp.2):452-456.(in Chinese))
[8] ISMAIL Z Z, AL-HASHMI E A. Reuse of Waste Iron as a Partial Replacement of Sand in Concrete[J]. Waste Manag, 2008, 28(11): 2048-2053.
[9] 马卫华,孟庆娟,康洪震,等.铁尾矿砂混凝土梁受剪性能试验研究[J].建筑结构学报,2021,42(增刊1):322-329.(MA Wei-hua, MENG Qing-juan, KANG Hong-zhen, et al. Experimental Study on Shear Behavior of Iron Tailings Sand Concrete Beams[J]. Journal of Building Structures, 2021, 42(Supp.1): 322-329.(in Chinese))
[10]SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of Iron Ore Tailings as Replacement for Fine Aggregate in Concrete[J]. Construction and Building Materials, 2016, 120: 72-79.
[11]宁宝宽,徐永泽,崔 琨,等.铁尾矿砂混凝土的应力应变全曲线特性[J].沈阳工业大学学报,2021,43(5):573-578.(NING Bao-kuan, XU Yong-ze, CUI Kun, et al. Stress-strain Full Curve Characteristics of Iron Tailing Sand Concrete[J]. Journal of Shenyang University of Technology, 2021, 43(5): 573-578.(in Chinese))
[12]宁 波, 闫 艳, 左夏伟, 等. 铁尾矿砂混凝土力学特性实验研究[J]. 矿产综合利用, 2021(4): 159-164, 175. (NING Bo, YAN Yan, ZUO Xia-wei, et al. Experimental Study on Mechanical Properties of Iron Tailings Concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 159-164, 175.(in Chinese))
[13]王 营, 顾晓薇, 张延年, 等. 铁尾矿砂水泥砂浆抗压强度及微观结构分析[J]. 金属矿山, 2022(1): 60-64. (WANG Ying, GU Xiao-wei, ZHANG Yan-nian, et al. Analysis of Compressive Strength and Microstructure of Iron Tailings Sand Cement Mortar[J]. Metal Mine, 2022(1): 60-64.(in Chinese))
[14]BA Ming-fang, QI Xin-yu, ZHENG Yu-hang, et al. Improved Designed Method of Pervious Concrete Based on Optimal Volume Ratio of Paste to Aggregate[J]. Journal of Central South University, 2021, 28(5): 1534-1545.
[15]YU L, ZHANG J X, MU K. Relationships between Compressive Strength and Microstructure in Mortars with Iron Ore Tailings as Fine Aggregate[J]. Applied Mechanics and Materials, 2012, 188: 211-218.
[16]黄正均, 张 英, 任奋华, 等. 铁尾矿砂对喷射混凝土力学特性影响的试验分析[J]. 矿业研究与开发, 2019, 39(4): 121-126. (HUANG Zheng-jun, ZHANG Ying, REN Fen-hua, et al. Experimental Analysis of Influence of Iron Tailings Sand on Mechanical Properties of Shotcrete[J]. Mining Research and Development, 2019, 39(4): 121-126.(in Chinese))
[17]黄智山. 泌水沉降细观模型与大流动性混凝土 拌合物性能的研究[J]. 混凝土, 2017(10): 135-139. (HUANG Zhi-shan. Study on the Mesoscopic Model of Bleeding-settlement and Fresh Properties of High Fluidity of Concrete[J]. Concrete, 2017(10): 135-139.(in Chinese))
[18]JGJ/T 10—2011, 混凝土泵送施工技术规程[S]. 北京: 中国建筑工业出版社, 2011. (JGJ/T 10—2011, Technical Specification for Pumping Construction of Concrete[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese))
[19]LI B, XU L, CHI Y, et al. Experimental Investigation on the Stress-strain Behavior of Steel Fiber Reinforced Concrete Subjected to Uniaxial Cyclic Compression[J]. Construction and Building Materials, 2017, 140: 109-118.
[20]徐 颖, 卜静武, 刘雨夕, 等. 循环荷载下橡胶混凝土的断裂特性[J]. 土木与环境工程学报(中英文), 2022, 44(1): 142-148. (XU Ying, BU Jing-wu, LIU Yu-xi, et al. Fracture Behaviors of Rubber Concrete under Cyclic Loading[J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 142-148.(in Chinese))

基金

2022年江苏省高校哲学社会科学研究基金项目(2022SJYB0464);江苏省基建教育基本建设学会2021年度重点研究项目(jyjb2021D003)

PDF(7317 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map