侧部承压溶洞与深埋隧道间隔水岩体安全厚度研究

乔栋磊, 李文杰, 安艳军, 梁斌

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (5) : 162-170.

PDF(7049 KB)
PDF(7049 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (5) : 162-170. DOI: 10.11988/ckyyb.20221651
岩土工程

侧部承压溶洞与深埋隧道间隔水岩体安全厚度研究

  • 乔栋磊1, 李文杰1, 安艳军2, 梁斌1
作者信息 +

Safe Thickness of Water-proof Rock Mass between Side Karst Cave with Pressurized Water and Deep-buried Tunnel

  • QIAO Dong-lei1, LI Wen-jie1, AN Yan-jun2, LIANG Bin1
Author information +
文章历史 +

摘要

为保证深埋隧道安全通过侧部高压富水溶洞区段,在隧道突水发生机制分析与隔水岩体最小安全厚度划分的基础上,结合突变理论、鲁宾涅特方程及相关工程经验对隧道边墙岩体安全厚度进行研究,导出最小安全厚度计算公式,建立突水判据,分析相关影响因素对隧道边墙隔水岩体最小安全厚度的影响规律。结果表明:隔水岩体最小安全厚度Hmin与围岩力学参数弹性模量E、内摩擦角φ呈正相关,与溶洞水压力qw、岩梁跨度L及隧道埋深h呈负相关;各因素对Hmin影响程度由大到小依次为hφELqw,其中hφ影响程度相近,E在超过3 GPa的情况下Hmin变化趋于平缓,E的影响程度与L相近;结合有限元模拟结果和工程实例分析,验证了Hmin理论计算公式及突水判据的准确性与可行性,对相关工程建设具有指导意义。

Abstract

To ensure the safe passage of deep-buried tunnels through sections characterized by high-pressure water-rich karst caves, we investigated into the water inrush mechanism of the tunnel and determined the minimum safe thickness of waterproof rock mass. Based on the catastrophe theory, the Rubinett equation, and engineering experiences, we derived a calculation formula for the minimum safe thickness and established a water inrush criterion. We also scrutinized the influence of pertinent factors on the minimum safe thickness of the tunnel sidewall’s waterproof rock mass. Results indicate a positive correlation between the minimum safe thickness of the waterproof rock mass (Hmin) and the mechanical parameters of surrounding rock, including elastic modulus (E) and internal friction angle (φ), while a negative correlation with the water pressure within the karst cave (qw), the span of the rock beam (L), and the burial depth of tunnel (h). The influence of each factor on Hmin ranks in an order of h, φ, E, L, and qw from greatest to least, with h and φ exhibiting similar degrees of influence. Moreover, when E exceeds 3 GPa, the change in Hmin tends to be stable, akin to the influence of L. Finite element simulations and empirical examples align with theoretical calculations, confirming the accuracy and applicability of the derived Hmin theoretical calculation formula and the water inrush criterion. This synthesis of theoretical and empirical evidence offers guidance for relevant engineering endeavors.

关键词

深埋岩溶隧道 / 富水溶洞 / 最小安全厚度 / 突变理论 / 突水判据

Key words

deep-buried karst tunnel / water-rich karst cave / minimum safe thickness / catastrophe theory / criterion of water inrush

引用本文

导出引用
乔栋磊, 李文杰, 安艳军, 梁斌. 侧部承压溶洞与深埋隧道间隔水岩体安全厚度研究[J]. raybet体育在线 院报. 2024, 41(5): 162-170 https://doi.org/10.11988/ckyyb.20221651
QIAO Dong-lei, LI Wen-jie, AN Yan-jun, LIANG Bin. Safe Thickness of Water-proof Rock Mass between Side Karst Cave with Pressurized Water and Deep-buried Tunnel[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(5): 162-170 https://doi.org/10.11988/ckyyb.20221651
中图分类号: U458   

参考文献

[1] 郭佳奇. 岩溶隧道防突厚度及突水机制研究[D]. 北京: 北京交通大学, 2011. (GUO Jia-qi. Study on Against-inrush Thickness and Waterburst Mechanism of Karst Tunnel[D].Beijing: Beijing Jiaotong University, 2011. (in Chinese))
[2] XUE Y, WANG D, LI S, et al. A Risk Prediction Method for Water or Mud Inrush from Water-bearing Faults in Subsea Tunnel Based on Cusp Catastrophe Model[J]. KSCE Journal of Civil Engineering, 2017, 21(7): 2607-2614.
[3] 袁永才, 李术才, 李利平, 等. 尚家湾强岩溶隧道突水突泥伴生灾害源综合分析[J]. 中南大学学报(自然科学版), 2017, 48(1): 203-211. (YUAN Yong-cai, LI Shu-cai, LI Li-ping, et al. Comprehensive Analysis on Disaster Associated by Water Inrush and Mud Gushing in Shangjiawan Karst Tunnel[J]. Journal of Central South University (Science and Technology), 2017, 48(1): 203-211.(in Chinese))
[4] 李 集, 卢 浩, 夏沅谱. 岩溶隧道防突安全厚度研究综述及估算方法探讨[J]. 隧道建设, 2014, 34(9): 862-872. (LI Ji, LU Hao, XIA Yuan-pu. Survey and Research on Estimation Method of Against-inrush Safe Thickness of Rock Strata in Karst Tunnels[J]. Tunnel Construction, 2014, 34(9): 862-872.(in Chinese))
[5] 李 浪, 戎晓力, 王明洋, 等. 深长隧道突水地质灾害三维模型试验系统研制及其应用[J]. 岩石力学与工程学报, 2016, 35(3): 491-497. (LI Lang, RONG Xiao-li, WANG Ming-yang, et al. Development and Application of 3D Model Test System for Water Inrush Geohazards in Long and Deep Tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 491-497.(in Chinese))
[6] 李术才,王 康, 李利平, 等. 岩溶隧道突水灾害形成机理及发展趋势[J]. 力学学报, 2017, 49(1): 22-30. (LI Shu-cai, WANG Kang, LI Li-ping, et al. Mechanical Mechanism and Development Trend of Water-inrush Disasters in Karst Tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 22-30.(in Chinese))
[7] 李术才,许振浩,黄 鑫,等.隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J].岩石力学与工程学报,2018,37(5):1041-1069.(LI Shu-cai, XU Zhen-hao, HUANG Xin, et al. Classification, Geological Identification, Hazard Mode and Typical Case Studies of Hazard-causing Structures for Water and Mud Inrush in Tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1041-1069.(in Chinese))
[8] 李术才, 潘东东, 许振浩, 等. 承压型隐伏溶洞突水灾变演化过程模型试验[J]. 岩土力学, 2018, 39(9): 3164-3173. (LI Shu-cai, PAN Dong-dong, XU Zhen-hao, et al. A Model Test on Catastrophic Evolution Process of Water Inrush of a Concealed Karst Cave Filled with Confined Water[J]. Rock and Soil Mechanics, 2018, 39(9): 3164-3173.(in Chinese))
[9] 李 涛, 张 丽, 蒋 庆, 等. 基于GDEM的隐伏岩溶隧道隔水岩体水压致裂安全厚度及破裂演化规律分析[J]. 隧道建设(中英文), 2021, 41(1): 67-76. (LI Tao, ZHANG Li, JIANG Qing, et al. Safe Thickness and Fracture Evolution Law Determined for Hydraulic Fracturing of Water-resistant Rock Mass with Hidden Karst Based on GDEM[J]. Tunnel Construction, 2021, 41(1): 67-76.(in Chinese))
[10]雷 霆,关 欣,洪 帆,等.顶部溶洞水压对隧道突涌水灾害影响的数值分析[J].隧道建设,2017,37(2):167-173.(LEI Ting, GUAN Xin, HONG Fan, et al. Numerical Analysis of Influence of Water Pressure of Overlying Karst Cave on Tunnel Water Inrush[J]. Tunnel Construction, 2017, 37(2): 167-173.(in Chinese))
[11]杨子汉,杨小礼,许敬叔,等.基于上限原理的两种岩溶隧道岩墙厚度计算方法[J].岩土力学,2017,38(3):801-809.(YANG Zi-han,YANG Xiao-li,XU Jing-shu,et al. Two Methods for Rock Wall Thickness Calculation in Karst Tunnels Based on Upper Bound Theorem[J]. Rock and Soil Mechanics, 2017, 38(3): 801-809.(in Chinese))
[12]YANG Z H, ZHANG J H. Minimum Safe Thickness of Rock Plug in Karst Tunnel According to Upper Bound Theorem[J]. Journal of Central South University, 2016, 23(9): 2346-2353.
[13]郭佳奇, 李宏飞,陈 帆, 等. 岩溶隧道掌子面防突厚度理论分析[J]. 地下空间与工程学报, 2017, 13(5): 1373-1380. (GUO Jia-qi, LI Hong-fei, CHEN Fan, et al. Theoretical Analysis on Water-resisting Thickness of Karst Tunnel Face[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1373-1380.(in Chinese))
[14]邹 洋, 彭立敏, 张智勇, 等. 基于突变理论的岩溶隧道拱顶安全厚度分析与失稳预测[J]. 铁道科学与工程学报, 2021, 18(10): 2651-2659. (ZOU Yang, PENG Li-min, ZHANG Zhi-yong, et al. Safety Thickness Analysis and Stability Prediction of Tunnel Roof in Karst Region Based on Catastrophe Theory[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2651-2659.(in Chinese))
[15]JIANG C, ZHAO M H, CAO W G. Stability Analysis of Subgrade Cave Roofs in Karst Region[J]. Journal of Central South University of Technology,2008,15(2):38-44.
[16]郭佳奇, 乔春生,曹 茜. 侧部高压富水溶腔与隧道间岩柱安全厚度的研究[J]. 现代隧道技术, 2010, 47(6): 10-16. (GUO Jia-qi, QIAO Chun-sheng, CAO Xi. Research on Safe Thickness of Rock Pillar between the Tunnel and Adjacent Karst Cave with Pressurised Water[J]. Modern Tunnelling Technology, 2010, 47(6): 10-16.(in Chinese))
[17]郭佳奇,陈建勋,陈 帆,等.岩溶隧道断续节理掌子面突水判据及灾变过程[J].中国公路学报,2018,31(10):118-129.(GUO Jia-qi,CHEN Jian-xun,CHEN Fan,et al. Water Inrush Criterion and Catastrophe Process of a Karst Tunnel Face with Non-persistent Joints[J]. China Journal of Highway and Transport, 2018, 31(10): 118-129.(in Chinese))
[18]李利平, 李术才, 张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J]. 岩土力学, 2010, 31(2): 523-528. (LI Li-ping, LI Shu-cai, ZHANG Qing-song. Study of Mechanism of Water Inrush Induced by Hydraulic Fracturing in Karst Tunnels[J]. Rock and Soil Mechanics, 2010, 31(2): 523-528.(in Chinese))
[19]李永靖,王 松, 印建文, 等. 隧道穿越突出煤层预留安全岩柱失稳分析方法[J]. raybet体育在线 院报, 2023, 40(8): 97-104, 111. (LI Yong-jing, WANG Song, YIN Jian-wen, et al. A Method of Analyzing the Instability of Reserved Safety Rock Pillar for Tunnel Crossing Outburst Coal Seam[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(8): 97-104, 111.(in Chinese))
[20]YANG X L,XIAO H B.Safety Thickness Analysis of Tunnel Floor in Karst Region Based on Catastrophe Theory[J].Journal of Central South University, 2016, 23(9): 2364-2372.
[21]宋瑞刚, 张顶立,文 明. 穿越断层破碎带深埋隧道围岩失稳的突变理论分析[J]. 土木工程学报, 2015, 48(增刊1): 289-292. (SONG Rui-gang, ZHANG Ding-li, WEN Ming. Catastrophe Theory Analysis of Surrounding Rock Instability of Deep-buried Tunnel Crossing Fault Fracture Zone[J]. China Civil Engineering Journal, 2015, 48(Supp.1): 289-292.(in Chinese))
[22]吴张中,徐光黎,吴 立,等.超大断面隧道侧向扩挖施工围岩力学特征研究[J].岩土工程学报,2009,31(2):172-177.(WU Zhang-zhong, XU Guang-li, WU Li, et al. Mechanical Deformation Characteristics of Rock Mass Surrounding Lateral Enlarging Excavation of Tunnels with Ultra-large Sections[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 172-177.(in Chinese))
[23]张 梅. 岩溶隧道高压富水充填溶腔释能降压新技术[M]. 北京: 科学出版社, 2010. (ZHANG Mei. A New Technology of Releasing Energy and Reducing Pressure in Karst Tunnel with High Pressure and Rich Water Filling Cavity[M]. Beijing: Science Press, 2010.(in Chinese))
[24]房忠栋, 杨为民,王 旌, 等. 深埋隧道前方承压溶洞隔水岩体最小安全厚度研究[J]. 中南大学学报(自然科学版), 2021, 52(8): 2805-2816. (FANG Zhong-dong, YANG Wei-min, WANG Jing, et al. Study on the Minimum Safe Thickness of Water-proof Rock Mass in Front of Deep-buried Tunnels[J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2805-2816.(in Chinese))

基金

国家自然科学基金资助项目(U1604135);中铁十五局集团有限公司A类科研课题(2019A01);河南省科技厅产学研合作项目(2015HNCXY011)

PDF(7049 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map