岩体结构控制着岩质斜坡的变形破坏模式,但传统的结构面信息调查方法存在危险性高、难度大的缺陷。为安全、高效地获取斜坡岩体结构信息,利用无人机摄影技术开展高陡岩质斜坡的测量,构建斜坡岩体的3D点云模型,识别结构面的产状、间距、迹长等岩体结构信息。对湖北秭归卡门子湾滑坡区调查验证,斜坡共发育6组优势结构面,平均间距为0.46~1.01 m,平均迹长为0.82~12.57 m;无人机3D点云获取的岩体结构信息精度满足要求,方法高效、可行;获得的岩体结构信息为斜坡岩体结构模型建立和稳定性评价等工作提供了可靠的数据基础。
Abstract
To address the limitations of traditional discontinuity surveys,which are often hazardous and challenging,we deployed Unmanned Aerial Vehicle (UAV) photography to capture data on high and steep rock slopes safely and efficiently.This approach enabled us to construct a 3D point cloud model detailing the rock mass structure of the slope.Through analysis of the 3D point cloud,we extracted critical parameters such as the orientation,spacing,and persistence of rock discontinuities.Subsequently,we generated a Discrete Fracture Network (DFN) model for the slope’s rock mass structure.Field validation was conducted on a precipitous rock slope near the Kamenziwan landslide in Zigui,Hubei Province.The discontinuity data retrieved from the UAV-derived 3D point cloud demonstrated sufficient accuracy,thereby proving the approach’s effectiveness and practicality.The slope’s six clusters of discontinuities had average spacings ranging from 0.46 m to 1.01 m and extents from 0.82 m to 12.57 m.The obtaied data of discontinuities provides reliable base for rock structural model establishment and slope stability evaluation.
关键词
高陡斜坡 /
无人机点云 /
结构面产状 /
结构面间距 /
结构面迹长
Key words
high and steep rock slope /
3D point cloud obtained from UAV survey /
orientation of discontinuities /
spacing between discontinuities /
ductility of discontinuities
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 葛云峰, 夏 丁, 唐辉明, 等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报, 2017, 36(12): 3050-3061. (GE Yun-feng, XIA Ding, TANG Hui-ming, et al. Intelligent Identification and Extraction of Geometric Properties of Rock Discontinuities Based on Terrestrial Laser Scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3050-3061.(in Chinese))
[2] 许 度,冯夏庭,李邵军,等.激光扫描隧洞变形与岩体结构面测试技术及应用[J].岩土工程学报,2018,40(7):1336-1343.(XU Du, FENG Xia-ting, LI Shao-jun, et al. In-situ Testing Technique for Tunnel Deformation and Structural Plane of Rock Mass Based on Contactless Laser Scanning Method and Its Application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1336-1343.(in Chinese))
[3] KIM D H, GRATCHEV I, BALASUBRAMANIAM A. Back Analysis of a Natural Jointed Rock Slope Based on the Photogrammetry Method[J]. Landslides, 2015, 12(1): 147-154.
[4] 王凤艳, 陈剑平, 杨国东, 等. 基于数字近景摄影测量的岩体结构面几何信息解算模型[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1839-1846. (WANG Feng-yan, CHEN Jian-ping, YANG Guo-dong, et al. Solution Models of Geometrical Information of Rock Mass Discontinuities Based on Digital Close Range Photogrammetry[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1839-1846.(in Chinese))
[5] 刘子侠, 陈剑平, 王凤艳, 等. 基于活动控制的岩体结构面几何信息快速获取[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1192-1199. (LIU Zi-xia, CHEN Jian-ping, WANG Feng-yan, et al. Rapid Acquisition of Geometrical Information of Rock Mass Discontinuities Based on Portable Controller Frame[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4): 1192-1199.(in Chinese))
[6] TZIAVOU O,PYTHAROULI S,SOUTER J.Unmanned Aerial Vehicle (UAV) Based Mapping in Engineering Geological Surveys: Considerations for Optimum Results[J]. Engineering Geology, 2018, 232: 12-21.
[7] 项荣华, 王圣腾, 张 帅, 等. 基于摄影成像的景观平衡石调查及稳定性分析[J]. raybet体育在线
院报, 2022, 39(11): 135-140, 148. (XIANG Rong-hua, WANG Sheng-teng, ZHANG Shuai, et al. Investigation and Stability Analysis of Balanced Rock Based on UAV Photographic Imaging[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(11): 135-140, 148.(in Chinese))
[8] MENEGONI N, GIORDAN D, PEROTTI C, et al. Detection and Geometric Characterization of Rock Mass Discontinuities Using a 3D High-resolution Digital Outcrop Model Generated from RPAS Imagery-Ormea Rock Slope, Italy[J]. Engineering Geology, 2019, 252: 145-163.
[9] 贾曙光, 金爱兵, 赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用[J]. 岩土力学, 2018, 39(3): 1130-1136. (JIA Shu-guang, JIN Ai-bing, ZHAO Yi-qing. Application of UAV Oblique Photogrammetry in the Field of Geology Survey at the High and Steep Slope[J]. Rock and Soil Mechanics, 2018, 39(3): 1130-1136.(in Chinese))
[10]叶 震, 许 强, 刘 谦, 等. 无人机倾斜摄影测量在边坡岩体结构面调查中的应用[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1739-1746. (YE Zhen, XU Qiang, LIU Qian, et al. Application of Unmanned Aerial Vehicle Oblique Photogrammetry to Investigation of High Slope Rock Structure[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1739-1746.(in Chinese))
[11]周福军. 复杂山区倾斜摄影岩体结构解译技术研究[J].铁道工程学报,2020,37(12):32-37.(ZHOU Fu-jun.Research on the Rock Mass Structure Interpretation Technology of Oblique Photography in Complex Mountain Area[J]. Journal of Railway Engineering Society,2020,37(12):32-37.(in Chinese))
[12]WANG W,ZHAO W,CHAI B,et al.Discontinuity Interpretation and Identification of Potential Rockfalls for High-steep Slopes Based on UAV Nap-of-the-object Photogrammetry[J]. Computers & Geosciences,2022,166:105191.
[13]何钰铭,王金波,金卉林,等.卡门子湾滑坡及周边碎屑岩岸坡劣化变形机制初步研究[J].资源环境与工程,2020,34(4):554-560.(HE Yu-ming,WANG Jin-bo,JIN Hui-lin,et al. Preliminary Study on Deterioration Deformation Mechanism of Kamenziwan Landslide and Its Surrounding Clastic Rock Bank Slope[J]. Resources Environment & Engineering,2020,34(4):554-560.(in Chinese))
[14]RIQUELME A J, ABELLN A, TOMS R, et al. A New Approach for Semi-automatic Rock Mass Joints Recognition from 3D Point Clouds[J]. Computers & Geosciences, 2014, 68: 38-52.
[15]RIQUELME A J, ABELLN A, TOMS R. Discontinuity Spacing Analysis in Rock Masses Using 3D Point Clouds[J]. Engineering Geology, 2015, 195: 185-195.
[16]RIQUELME A, TOMS R, CANO M, et al. Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3005-3028.