叶尔羌河源流区洪水极值事件联合概率分析

司涵, 何英, 徐慧敏, 卢潇悦

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (4) : 46-54.

PDF(2485 KB)
PDF(2485 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (4) : 46-54. DOI: 10.11988/ckyyb.20221523
水资源

叶尔羌河源流区洪水极值事件联合概率分析

  • 司涵, 何英, 徐慧敏, 卢潇悦
作者信息 +

Joint Probability Analysis of Extreme Flood Events in the Source Flow Area of Yarkant River

  • SI Han, HE Ying, XU Hui-min, LU Xiao-yue
Author information +
文章历史 +

摘要

以叶尔羌河流域源区为例,选取塔什库尔干气象站的气温数据和库鲁克栏杆站的洪水资料,基于Copula函数对洪峰流量和1、3、7 d洪水总量的概率分布特征进行分析,结合小波相干分析进一步探讨气候因子变化与洪水极值事件的关系。结果表明:两变量的同现重现期>单变量重现期>两变量的联合重现期,联合重现期和同现重现期随着洪峰流量和洪量的增大而变长,相应洪水极值事件发生概率降低;夏季日平均气温和洪峰流量序列在年代际尺度上具有高相干性,夏季日平均气温先于洪峰流量0.13~0.31周期变化;基于Copula函数建立1957—2010年夏季日平均气温与洪峰之间的二维统计模型,单变量重现期越长,所对应两变量的联合重现期与同现重现期之间相差越大;随着夏季日平均气温的升高,不同重现期洪水发生的可能性均增大。研究成果可对该地区的洪水风险管理和水资源适应性对策提供重要的科学价值和技术支撑。

Abstract

Based on temperature data from Tashkurgan meteorological station and flood data from Kulukelangan station, we investigated the probability distribution characteristics of flood peak discharge and 1 d, 3 d, and 7 d total flood volume of Yarkant River by using Copula functions. Additionally, we explored the relationship between climate factor variations and extreme flood events through wavelet coherence analysis. Our findings indicate that the co-occurrence return period of two variables surpasses the single variable return period, which, in turn, exceeds the joint return period of two variables. Both the joint return period and the co-occurrence return period increase with the continuous rises in peak flow and flood volume, leading to a decreasing likelihood of corresponding extreme flood events. We also found a high coherence between summer daily average temperature and flood peak discharge series on an interdecadal scale. The summer daily average temperature tends to change 0.13-0.31 cycles prior to the occurrence of flood peak flow. By using Copula functions, we established a two-dimensional statistical model between summer daily average temperature and flood peak spanning from 1957 to 2010. Notably, as the return period of a single variable increases, the disparity between joint return period and co-occurrence return period of the corresponding two variables widens. As summer daily average temperature rises, the likelihood of floods in different return periods also increases. These research outcomes carry significant scientific value and offer technical support for the flood risk management and adaptive measures in the Yarkant River Basin.

关键词

洪水极值 / 气候因子 / 重现期 / Copula函数 / 小波相干 / 频率分析 / 叶尔羌河源流区

Key words

extreme value of flood / climatic factors / return period / Copula function / Wavelet coherence / probability analysis / source flow area of the Yarkant River

引用本文

导出引用
司涵, 何英, 徐慧敏, 卢潇悦. 叶尔羌河源流区洪水极值事件联合概率分析[J]. raybet体育在线 院报. 2024, 41(4): 46-54 https://doi.org/10.11988/ckyyb.20221523
SI Han, HE Ying, XU Hui-min, LU Xiao-yue. Joint Probability Analysis of Extreme Flood Events in the Source Flow Area of Yarkant River[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(4): 46-54 https://doi.org/10.11988/ckyyb.20221523
中图分类号: P333   

参考文献

[1] 刘昌明, 刘小莽, 郑红星, 等. 气候变化对水文水资源影响问题的探讨[J]. 科学对社会的影响,2008(2): 21-27. (LIU Chang-ming, LIU Xiao-mang, ZHENG Hong-xing, et al. Discussion on the Impact of Climate Change on Hydrological and Water Resources[J]. Science and Society, 2008(2): 21-27.(in Chinese))
[2] 程文举, 席海洋, 张经天. 黑河上游径流对极端气候变化的响应研究[J]. 高原气象, 2020, 39(1): 120-129. (CHENG Wen-ju, XI Hai-yang, ZHANG Jing-tian. Response of Runoff to Extreme Climate Change in the Upper Reaches of the Heihe River[J]. Plateau Meteorology, 2020, 39(1): 120-129.(in Chinese))
[3] 方 建, 杜 鹃, 徐 伟, 等. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093. (FANG Jian, DU Juan, XU Wei, et al. Advances in the Study of Climate Change Impacts on Flood Disaster[J]. Advances in Earth Science, 2014, 29(9): 1085-1093.(in Chinese))
[4] 徐 洁, 毕宇珠, 雷秋良, 等. 1961—2020年宁夏地区极端气候变化趋势及影响因素分析[J]. 中国农业资源与区划, 2022, 43(12): 159-171. (XU Jie, BI Yu-zhu, LEI Qiu-liang, et al. Analysis of Extreme Climate Change Trends and Influencing Factors from 1961 to 2020 in Ningxia Hui Autonomous Region, China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(12): 159-171.(in Chinese))
[5] 孙 傅, 何霄嘉. 国际气候变化适应政策发展动态及其对中国的启示[J]. 中国人口·资源与环境, 2014, 24(5): 1-9. (SUN Fu, HE Xiao-jia. Global Progress in Climate Change Adaptation Policies and Its Implication for China[J]. China Population, Resources and Environment, 2014, 24(5): 1-9.(in Chinese))
[6] 刘长君. 多元Copula分布函数在小流域设计洪水频率分析中的应用研究[J]. 水利技术监督, 2017, 25(1): 66-70. (LIU Chang-jun. Study on Application of Multivariate Copula Distribution Function in Frequency Analysis of Design Flood in Small Watershed[J]. Technical Supervision in Water Resources, 2017, 25(1): 66-70.(in Chinese))
[7] 郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3): 302-314. (GUO Sheng-lian, LIU Zhang-jun, XIONG Li-hua. Advances and Assessment on Design Flood Estimation Methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314.(in Chinese))
[8] 冯 平, 毛慧慧, 王 勇. 多变量情况下的水文频率分析方法及其应用[J]. 水利学报, 2009, 40(1): 33-37. (FENG Ping, MAO Hui-hui, WANG Yong. Method for Hydrological Reoccurrence Frequency Analysis under the Condition of Multivariate[J]. Journal of Hydraulic Engineering, 2009, 40(1): 33-37.(in Chinese))
[9] 方 彬,郭生练,肖 义,等.年最大洪水两变量联合分布研究[J].水科学进展,2008,19(4):505-511.(FANG Bin, GUO Sheng-lian, XIAO Yi, et al. Annual Maximum Flood Occurrence Dates and Magnitudes Frequency Analysis Based on Bivariate Joint Distribution[J]. Advances in Water Science, 2008, 19(4): 505-511.(in Chinese))
[10] 杨 卫,张利平,闪丽洁,等.汉江流域极端水文事件时空分布特征[J].气候变化研究进展,2015,11(1):15-21.(YANG Wei, ZHANG Li-ping, SHAN Li-jie, et al. Spatiotemporal Distribution Features of Extreme Hydrological Events in the Hanjiang River Basin[J]. Progressus Inquisitiones de Mutatione Climatis, 2015, 11(1): 15-21.(in Chinese))
[11] 林 娴,欧阳昊,陈晓宏,等.基于Copula函数的组合变量联合概率分布研究及应用[J].水文,2017,37(1):1-7.(LIN Xian, OUYANG Hao, CHEN Xiao-hong, et al. Studying Probability Distribution of Flood Elements Combination Based on Copula[J]. Journal of China Hydrology, 2017, 37(1): 1-7.(in Chinese))
[12] 杜 懿, 麻荣永. 不同Copula函数在洪水峰量联合分布中的应用比较[J]. 水力发电, 2018, 44(12): 24-26, 58. (DU Yi, MA Rong-yong. Comparison of the Application of Different Copula Functions in Joint Distribution of Flood Peak and Volume[J]. Water Power, 2018, 44(12): 24-26, 58.(in Chinese))
[13] 范嘉炜,黄锦林.基于Copula函数的洪峰流量与洪水历时联合分布研究[J].中国农村水利水电,2017(2):204-209,214.(FAN Jia-wei,HUANG Jin-lin.Combined Frequency Analysis of Peak and Duration Based on Copula Function[J].China Rural Water and Hydropower,2017(2):204-209,214.(in Chinese))
[14] 何 英,彭 亮,郑淑文,等.基于Copula函数的叶尔羌河流域洪水要素联合分布研究[J].中国农村水利水电,2019(4):74-79.(HE Ying,PENG Liang,ZHENG Shu-wen,et al. Study on Joint Distribution of Flood Elements in Yarkant River Basin Based on Copula Function[J]. China Rural Water and Hydropower,2019(4):74-79.(in Chinese))
[15] GUO A, CHANG J, HUANG Q, et al. Hybrid Method for Assessing the Multi-scale Periodic Characteristics of the Precipitation-Runoff Relationship: A Case Study in the Weihe River Basin, China[J]. Journal of Water and Climate Change, 2017, 8(1): 62-77.
[16] 王书霞, 张利平, 李 意, 等. 气候变化情景下澜沧江流域 极端洪水事件研究[J]. 气候变化研究进展, 2019, 15(1): 23-32. (WANG Shu-xia, ZHANG Li-ping, LI Yi, et al. Extreme Flood in the Lancang River Basin under Climate Change[J]. Climate Change Research, 2019, 15(1): 23-32.(in Chinese))
[17] KAY A L, JONES R G, REYNARD N S. RCM Rainfall for UK Flood Frequency Estimation. II. Climate Change Results[J]. Journal of Hydrology, 2006, 318(1/2/3/4): 163-172.
[18] IQBAL M, DAHRI Z, QUERNER E, et al. Impact of Climate Change on Flood Frequency and Intensity in the Kabul River Basin[J]. Geosciences, 2018, 8(4): 114.
[19] 王鹏赫, 赵成义, 王丹丹, 等. 气候变化对叶尔羌河流域极端水文事件的影响[J]. 生态科学, 2018, 37(6): 1-8. (WANG Peng-he, ZHAO Cheng-yi, WANG Dan-dan, et al. Influence of Climate Change on Hydrological Extremes of Yarkant River Basin[J]. Ecological Science, 2018, 37(6): 1-8.(in Chinese))
[20] 吴舒祺, 赵文吉, 杨 阳, 等. 基于小波变换的长江中下游地区极端降水与大气环流响应关系研究[J]. 水资源与水工程学报, 2021, 32(4): 67-76. (WU Shu-qi, ZHAO Wen-ji, YANG Yang, et al. Response of Extreme Precipitation Events in the Middle and Lower Reaches of the Yangtze River Basin to the Atmospheric Circulation Based on Continuous Wavelet Transform[J]. Journal of Water Resources and Water Engineering, 2021, 32(4): 67-76.(in Chinese))
[21] 侯芸芸, 宋松柏, 赵丽娜, 等. 基于Copula函数的3变量洪水频率研究[J]. 西北农林科技大学学报(自然科学版), 2010, 38(2): 219-228. (HOU Yun-yun, SONG Song-bai, ZHAO Li-na, et al. Research of Trivariate Flood Frequency Based on Copula Function[J]. Journal of Northwest Agriculture & Forest University (Natural Science), 2010, 38(2): 219-228.(in Chinese))
[22] 杜 鸿. 气候变化背景下淮河流域洪水极值概率统计分析与研究[D].武汉:武汉大学,2014.(DU Hong. Probability and Statistical Analysis of Flood Extreme Events under Climate Change in the Huaihe River Basin,China[D].Wuhan:Wuhan University,2014.(in Chinese))
[23] 王景荣. 新疆叶尔羌河冰川突发性洪水成因调查与分析[J]. 水土保持通报, 1990, 10(5): 33-38. (WANG Jing-rong. Investigation and Analysis of the Causes of Sudden Floods in the Yerqiang River Glacier in Xinjiang[J]. Bulletin of Soil and Water Conservation,1990,16(5):33-38.(in Chinese))
[24] 孙桂丽,陈亚宁,李卫红,等.新疆叶尔羌河冰川湖突发洪水对气候变化的响应[J].冰川冻土,2010,32(3):580-586.(SUN Gui-li, CHEN Ya-ning, LI Wei-hong, et al. The Response of Glacial Lake Outburst Floods to Climate Change in the Yarkant River, Xinjiang[J]. Journal of Glaciology and Geocryology, 2010, 32(3): 580-586.(in Chinese))
[25] 卫仁娟, 彭 亮, 梁 川, 等. 基于MODIS雪盖数据的叶尔羌河流域积雪再分析[J]. 工程科学与技术, 2018, 50(6): 141-147. (WEI Ren-juan, PENG Liang, LIANG Chuan, et al. Analysis of Snow Coverage in Yarkant River Basin Based on MODIS Snow Data[J]. Advanced Engineering Sciences, 2018, 50(6): 141-147.(in Chinese))
[26] CHEN Y, XU C, CHEN Y, et al. Response of Glacial-lake Outburst Floods to Climate Change in the Yarkant River Basin on Northern Slope of Karakoram Mountains, China[J]. Quaternary International, 2010, 226(1/2): 75-81.

基金

新疆维吾尔自治区高校科研计划自然科学青年项目(XJEDU2021Y023)

PDF(2485 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map