隧道锚作为悬索桥的重要受力构件,其稳定性是保证悬索桥安全运行的关键。为探究某大跨度铁路悬索桥隧道锚在碎裂岩夹层中的受荷响应规律,建立精细化数值模型,对隧道锚的稳定性进行综合评估,论证隧道锚在碎裂岩夹层中的适用性和安全性。研究表明:碎裂岩夹层对隧道锚的变形影响显著,隧道锚后锚面及围岩的位移分布曲线呈左高右低的“驼峰状”,锚塞体界面摩阻力在碎裂岩夹层区域产生突变。锚-岩联合体的破坏从碎裂岩夹层中锚塞体拱顶区域开始,逐步向拱腰和拱底扩展,直至锚-岩界面塑性区贯通,其破坏模式为锚-岩接触带的剪切破坏。隧道锚的综合承载力以钢束受拉破坏为控制条件,综合极限承载力为2.3倍设计主缆力。隧道锚在碎裂岩夹层中的稳定性和适应性良好。
Abstract
The stability of tunnel anchorage is a crucial factor in ensuring the safe operation of suspension bridges, as it forms an integral component of the structure. To investigate the load response behavior of tunnel anchorage in fractured rock interlayers of long-span suspension bridges, we have developed a three-dimensional numerical model. This model allows for a comprehensive evaluation of the stability of the tunnel anchorage, demonstrating its suitability and safety within fractured rock interlayers. Our findings highlight the significant impact of fractured rock interlayers on the deformation of tunnel anchorage. Specifically, the displacement distribution curve of the rear anchor face and surrounding rock exhibits a distinct hump shape, with greater displacement on the left while smaller displacement on the right. Additionally, the interface friction resistance of the anchorage experiences abrupt changes within the fractured rock interlayer region. The failure of the anchorage-rock system commences from the vault area within the fractured rock interlayer, gradually propagating towards the arch waist and bottom until the plastic zone of the anchorage-rock interface is connected. Shear failure in the contact zone between anchorage and rock characterizes the failure mode. The bearing capacity of the tunnel anchorage is governed by the tensile failure of the steel bundles, with the comprehensive ultimate bearing capacity reaching 2.3 times the designed main cable force. Overall, the tunnel anchorage demonstrates favorable stability and applicability within fractured rock interlayers.
关键词
隧道式锚碇 /
碎裂岩体 /
大跨度悬索桥 /
稳定性分析 /
数值模拟
Key words
tunnel anchorage /
fractured rock mass /
large-span suspension bridge /
stability analysis /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NI Y Q, ZHANG F L, XIA Y X, et al. Operational Modal Analysis of a Long-span Suspension Bridge under Different Earthquake Events[J]. Earthquakes and Structures, 2015, 8(4): 859-887.
[2] 汪海滨. 悬索桥隧道式复合锚碇系统作用机理研究[D]. 成都: 西南交通大学, 2006. (WANG Hai-bin. Mechanism Research on Compound Tunnel Anchorage of Suspension Bridge[D].Chengdu: Southwest Jiaotong University, 2006. (in Chinese))
[3] 王东英,尹小涛,汤 华,等. 隧道锚承载机制及承载力探究[C] ∥2018年全国工程地质学术年会论文集.北京:科学出版社,2018: 223-227. (WANG Dong-ying, YIN Xiao-tao, TANG Hua, et al. Beraing Mechanism and Bearing Capacity of Tunnel Anchorage[C] ∥Proceedings of the 2018 National Engineering Geological Academic Annual Conference. Beijing: Science Press, 2018: 223-227. (in Chinese))
[4] 张宜虎, 邬爱清, 周火明, 等. 悬索桥隧道锚承载能力和变形特征研究综述[J]. 岩土力学, 2019, 40(9): 3576-3584. (ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, et al. Review of Bearing Capacity and Deformation Characteristics of Tunnel-type Anchorage for Suspension Bridge[J]. Rock and Soil Mechanics, 2019, 40(9): 3576-3584.(in Chinese))
[5] 刘新荣, 韩亚峰, 景 瑞, 等. 隧道锚承载特性、变形破坏特征及典型案例分析[J]. 地下空间与工程学报, 2019, 15(6): 1780-1791. (LIU Xin-rong, HAN Ya-feng, JING Rui, et al. Bearing Characteristics, Deformation Failure Characteristics and Typical Case Studies of Tunnel-type Anchorage[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1780-1791.(in Chinese))
[6] 江 南, 冯 君. 铁路悬索桥大吨位隧道锚承载性能分析[J]. 铁道学报, 2013, 35(8): 88-93. (JIANG Nan, FENG Jun. Analysis on Bearing Performance of Large-tonnage Tunnel-type Anchorage of Railway Suspension Bridge[J]. Journal of the China Railway Society, 2013, 35(8): 88-93.(in Chinese))
[7] JIANG N, WANG D, FENG J, et al. Bearing Mechanism of a Tunnel-type Anchorage in a Railway Suspension Bridge[J]. Journal of Mountain Science, 2021, 18(8): 2143-2158.
[8] 颜冠峰, 王明年, 李睿峰, 等. 大渡河桥隧道锚力学响应研究及承载力判定[J]. 地下空间与工程学报, 2019, 15(4): 1149-1155. (YAN Guan-feng, WANG Ming-nian, LI Rui-feng, et al. Research on Mechanical Reaction and Ultimate Capacity of Tunnel-type Anchorage of Daduhe Super Bridge[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1149-1155.(in Chinese))
[9] 王东英,汤 华,尹小涛,等.隧道锚抗拔承载力及安全性评估方法[J].中国公路学报,2018,31(9):95-103.(WANG Dong-ying, TANG Hua, YIN Xiao-tao, et al. Uplift Bearing Capacity and Safety Assessment Method of Tunnel-type Anchorage[J]. China Journal of Highway and Transport, 2018, 31(9): 95-103.(in Chinese))
[10] LI D, LIU X, WU X, et al. Three-dimensional Elastoplastic Analysis on the Stability of Tunnel Anchorage in Soft Rock[C] ∥Geo-China 2016. Shandong, China. Reston, VA: American Society of Civil Engineers, 2016.
[11] 李栋梁, 刘新荣, 周火明, 等. 下卧软弱夹层的软岩隧道式锚碇承载特性研究[J]. 岩石力学与工程学报, 2017, 36(10): 2457-2465. (LI Dong-liang, LIU Xin-rong, ZHOU Huo-ming, et al. Bearing Behavior of Tunnel Anchorage in Soft Rock with an Underlying Weak Interlayer[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2457-2465.(in Chinese))
[12] 余家富, 吴勇进, 王腾飞, 等. 隧道式锚碇在碎裂岩体中成洞及承载特性数值模拟[J]. raybet体育在线
院报, 2022, 39(6): 101-106, 112. (YU Jia-fu, WU Yong-jin, WANG Teng-fei, et al. Numerical Simulation on Cave Forming and Bearing Characteristics of Tunnel Type Anchorage in Fractured Rock Mass[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(6): 101-106, 112.(in Chinese))
[13] 吕爱钟, 蒋斌松, 尤春安. 位移反分析有限元网格划分范围的研究[J]. 土木工程学报, 1999, 32(1): 26-30. (LYU Ai-zhong, JIANG Bin-song, YOU Chun-an. Study on Range of Mesh about Finite Element for Back Analysis of Displacement[J]. China Civil Engineering Journal, 1999, 32(1): 26-30.(in Chinese))
[14] 王钦科.浅覆盖层嵌岩桩抗拔承载特性及理论计算研究[D].成都:西南交通大学,2021.(WANG Qin-ke.Study on Uplift Bearing Characteristics and Theoretical Calculation of Rock-socketed Piles in Shallow Overburden[D].Chengdu:Southwest Jiaotong University,2021.(in Chinese))
[15] JTG/T D65-05—2015,公路悬索桥设计规范[S].北京:人民交通出版社,2016.(JTG/T D65-05—2015, Specifications for Design of Highway Suspension Bridge[S]. Beijing: China Communications Press,2016.(in Chinese))
[16] WEN L. Stabilization Research of the Tunnel Anchorage of Dadu River Bridge in Luding in Ya'an-to-Kangding Expressway[J]. American Journal of Civil Engineering, 2017, 5(4): 196.
[17] WEN L, CHENG Q, CHENG Q, et al. In Situ Creep Model Testing for the Tunnel Anchor Foundation of Xingkang Suspension Bridge in Luding of China[J]. Advances in Civil Engineering, 2020, Doi: 10.1155/2020/8898777.
[18] 张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究: 抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103. (ZHANG Qi-hua, YU Mei-wan, YU Zheng-fu, et al. Field Model Tests on Pullout Capacity of tunnel-type Anchorages of Puli Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103.(in Chinese))
[19] 余美万,张奇华,高利萍,等.金东大桥隧道锚现场模型试验及承载能力分析[J].岩土工程学报,2021,43(2):338-346.(YU Mei-wan, ZHANG Qi-hua, GAO Li-ping, et al. Field Model Tests and Bearing Capacity Analysis of Tunnel Anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346.(in Chinese))
[20] 阳 威. 大跨悬索桥多股成品索式预应力锚固系统研究[D]. 西安: 长安大学, 2020. (YANG Wei. Study on Prestressed Anchorage System of Multi-strand Finished Cable for Long-span Suspension Bridge[D].Xi'an: Changan University, 2020. (in Chinese))
基金
国家重点研发计划项目(2016YFC0802203);四川省自然科学基金项目(2023NSFSC0881)