基于GPR探测的长江源地区冰川与冻土厚度研究

周黎明, 张杨

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (3) : 1-8.

PDF(6824 KB)
PDF(6824 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (3) : 1-8. DOI: 10.11988/ckyyb.20231225
专家特约稿

基于GPR探测的长江源地区冰川与冻土厚度研究

  • 周黎明, 张杨
作者信息 +

Thickness of Glacier and Frozen Soil in the Source Region of Changjiang River Based on GPR Detection

  • ZHOU Li-ming, ZHANG Yang
Author information +
文章历史 +

摘要

长江源地区的冰川变化揭示了青藏高原气候变化趋势。冰下地形探测作为冰川发育和运动过程研究的基础,对长江地区水土保持和淡水资源储量研究具有指导意义。raybet体育在线 在长达10 a的江源科考基础上,分别于2022年、2023年采用探地雷达(GPR)技术对长江正源沱沱河发源地格拉丹东主峰的冰川厚度进行精准探测,并对查旦湿地冻土厚度上限进行了探测研究。结合多种冰川和冻土地质模型的GPR波场模拟结果,提高了GPR技术在长江源地区冰川和冻土探测的有效性和精准度。探测结果表明,格拉丹东主峰冰川厚度和查旦湿地冻土厚度上限均有不同程度降低,冰川厚度和冻土厚度上限观测是一个常年积累的结果,后续仍需持续进行观测,积累更多数据,分析变化趋势,以估算探测区域内冰储量,研究气候变化对冰川的影响效果。

Abstract

Changes of glacier in the source region of Changjiang (also known as Yangtze) River reveal the climate change trends in the Qinghai-Xizang (Tibetan) Plateau. Subglacial topography is crucial for understanding glacier development and movement processes, and is, furthermore, of guiding importance for the soil and water conservation and freshwater resource reserves in the source region of Changjiang River. Based on a decade of scientific expedition and research on the source region, the Changjiang River Scientific Research Institute accurately measured the glacier thickness on the main peak of Geladandong in 2022 and 2023 by employing ground-penetrating radar (GPR). We also conducted investigations on the upper limit of permafrost thickness in the Chatan Wetland. In association with numerical simulations of GPR wave field by multiple glacier and permafrost geological models, we have enhanced the effectiveness and accuracy of GPR in detecting glacier and permafrost in the source region. The findings manifest that both the glacier thickness on the main peak of Geladandong and the upper limit of permafrost in the Chatan Wetland have experienced varying degrees of decline. Long-term observations of glacier thickness and permafrost upper limits are essential and must be continued in order to accumulate more data and analyze trends, thus estimating ice reserves in the detection area and investigating the impacts of climate change on glaciers.

关键词

长江源 / 探地雷达(GPR) / 冰川 / 冻土 / 气候变化 / 水土保持 / 淡水资源储量

Key words

source region of Changjiang River / Ground Penetrating Radar (GPR) / glacier / frozen soil / climate change / soil and water conservation / freshwater resource reserve

引用本文

导出引用
周黎明, 张杨. 基于GPR探测的长江源地区冰川与冻土厚度研究[J]. raybet体育在线 院报. 2024, 41(3): 1-8 https://doi.org/10.11988/ckyyb.20231225
ZHOU Li-ming, ZHANG Yang. Thickness of Glacier and Frozen Soil in the Source Region of Changjiang River Based on GPR Detection[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(3): 1-8 https://doi.org/10.11988/ckyyb.20231225
中图分类号: P343.6    P631.3   

参考文献

[1] 王璞玉, 李忠勤, 吴利华, 等. 探地雷达在冰川厚度及冰下地形探测中的应用[J]. 吉林大学学报(地球科学版), 2011, 41(增刊1): 393-400.(WANG Pu-yu, LI Zhong-qin, WU Li-hua, et al. Application of Ground Penetrating Radar in Detecting Glacier Thickness and Subglacial Terrain[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(Supp.1): 393-400.(in Chinese))
[2] 吴利华,李忠勤,王璞玉,等.天山博格达峰地区四工河4号冰川雷达测厚与冰储量估算[J].冰川冻土,2011,33(2):276-282.(WU Li-hua,LI Zhong-qin,WANG Pu-yu,et al. Sounding the Sigong River Glacier No.4 in Mt.Bogda Area, the Tianshan Mountains by Using Ground Penetrating Radar and Estimating the Ice Volume[J]. Journal of Glaciology and Geocryology,2011,33(2):276-282.(in Chinese))
[3] 王玉哲, 任贾文, 秦 翔, 等. 祁连山老虎沟12号冰川雷达测厚和冰下地形特征研究[J]. 冰川冻土, 2016, 38(1): 28-35.(WANG Yu-zhe, REN Jia-wen, QIN Xiang, et al. Ice Depth and Glacier-bed Characteristics of the Laohugou Glacier No. 12, Qilian Mountains, Revealed by Ground-penetrating Radar[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 28-35.(in Chinese))
[4] 李亚楠, 李 真, 王宁练. 东昆仑山煤矿冰川雷达测厚及冰储量估算[J]. 冰川冻土, 2018, 40(1): 38-46.(LI Ya-nan, LI Zhen, WANG Ning-lian. Ice Thickness Sounded by Ground Penetrating Radar on the Meikuang Glacier in the Eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 38-46.(in Chinese))
[5] 靳胜强, 田立德. 西藏阿里地区嘎尼冰川厚度特征及冰储量估算[J]. 冰川冻土, 2019, 41(3): 516-524.(JIN Sheng-qiang, TIAN Li-de. Depth Sounded by GPR and Volume Estimated of the Gani Glacier in Ngari Prefecture, Tibet[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 516-524.(in Chinese))
[6] 顾钟炜.测地雷达在寒区浅层地质调查中的应用[J].冰川冻土,1994,16(3):283-288.(GU Zhong-wei.Application of Ground Penetrating Radar in Shallow Geological Survey in Cold Region[J]. Journal of Glaciology and Geocryology,1994,16(3):283-288.(in Chinese))
[7] 杜二计, 赵 林, 李 韧. 探地雷达在祁连山多年冻土调查中的应用[J]. 冰川冻土, 2009, 31(2): 364-371.(DU Er-ji, ZHAO Lin, LI Ren. The Application of Ground Penetrating Radar to Permafrost Investigation in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 364-371.(in Chinese))
[8] 武小鹏, 魏永梁, 张军平. 探地雷达在多年冻土工程地质勘察中的应用效果研究[J]. 地震工程学报, 2013, 35(2): 240-245.(WU Xiao-peng, WEI Yong-liang, ZHANG Jun-ping. Study on the Application Effect of Ground-penetrating Radar in Permafrost Engineering Geological Investigation[J]. China Earthquake Engineering Journal, 2013, 35(2): 240-245.(in Chinese))
[9] 单 波, 段 毅, 王延辉, 等. 地质雷达在冻土地区输电线路中的应用[J]. 电力勘测设计, 2018(5): 41-45.(SHAN Bo, DUAN Yi, WANG Yan-hui, et al. Application of GPR to Transmission Line in Permafrost Regions[J]. Electric Power Survey & Design, 2018(5): 41-45.(in Chinese))
[10] WOODWARD J, BURKE M J. Applications of Ground-penetrating Radar to Glacial and Frozen Materials[J]. Journal of Environmental and Engineering Geophysics, 2007, 12(1): 69-85.
[11] NAVARRO F J,MARTÍN-ESPAÑOL A,LAPAZARAN J J,et al. Ice Volume Estimates from Ground-penetrating Radar Surveys, Wedel Jarlsberg Land Glaciers, Svalbard[J]. Arctic, Antarctic, and Alpine Research,2014,46(2): 394-406.
[12] 蔡佳欣, 何昱君, 王晓文, 等. 联合时序InSAR和光学遥感解译的大雪山南段石冰川编目与分布特征分析[J]. 冰川冻土, 2023, 45(2): 774-785.(CAI Jia-xin, HE Yu-jun, WANG Xiao-wen, et al. Inventorying and Characterizing Rock Glaciers in the Southern Daxue Shan by Combining Time-series InSAR and Optical Image Interpretation[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 774-785.(in Chinese))
[13] 游艳辉, 李党民, 单 波, 等. 高密度电法在输电线路塔基基础附近多年冻土探测中的应用[J]. 冰川冻土, 2022, 44(2): 684-692.(YOU Yan-hui, LI Dang-min, SHAN Bo, et al. Application of High Density Electrical Resistivity Tomography in Investigating the Permafrost around Tower Foundations of Power Transmission Line[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 684-692.(in Chinese))
[14] 孙思源, 余学中, 谢汝宽, 等. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.(SUN Si-yuan, YU Xue-zhong, XIE Ru-kuan, et al. Capabilities of Airborne Electromagnetic Methods to Detect Permafrost[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 104-113.(in Chinese))
[15] 贠正利,黄小年.综合物探方法在青藏工程走廊多年冻土辨识中的应用[J].工程勘察,2019,47(11):71-78.(YUN Zheng-li,HUANG Xiao-nian.Application of Integrated Geophysical Method to Identify Permafrost in Qinghai-Tibet Engineering Corridor[J].Geotechnical Investigation & Surveying,2019,47(11):71-78.(in Chinese))
[16] 杨贵前,谢昌卫,王 武,等.浅基岩埋深条件下多年冻土的瞬变电磁法探测研究[J].冰川冻土,2019,41(5):1067-1077.(YANG Gui-qian,XIE Chang-wei,WANG Wu,et al. Study on TEM Sounding Permafrost with Shallow Bedrock[J]. Journal of Glaciology and Geocryology,2019,41(5):1067-1077.(in Chinese))
[17] JOL H M.探地雷达理论与应用[M].雷文太,童孝忠,周 旸,等译.北京:电子工业出版社, 2011.(JOL H M. Ground Penetrating Radar: Theory and Applications[M]. Translated by LEI Wen-tai, TONG Xiao-zhong, ZHOU Yang, et al. Beijing: Publishing House of Electronics Industry, 2011.(in Chinese))
[18] GIANNOPOULOS A. Modelling Ground Penetrating Radar by GprMax[J]. Construction and Building Materials, 2005, 19(10): 755-762.
[19] BERENGER J P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200.
[20] 李大心. 探地雷达方法与应用[M]. 北京: 地质出版社, 1994.(LI Da-xin. Method and Application of Ground Penetrating Radar[M]. Beijing: Geological Publishing House, 1994.(in Chinese))

基金

水利部重大科技项目(SKS-2022039);中央级公益性科研院所基本科研业务费项目(CKSF2023316/YT,CKSF2023307/YT)

PDF(6824 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map