基于WRF-CMAQ的中国典型湖泊大气氮沉降特征

樊洋成, 刘萍

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (2) : 27-36.

PDF(2566 KB)
PDF(2566 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (2) : 27-36. DOI: 10.11988/ckyyb.20221297
河湖保护与治理

基于WRF-CMAQ的中国典型湖泊大气氮沉降特征

  • 樊洋成1, 刘萍2
作者信息 +

Characteristics of Atmospheric Nitrogen Deposition in Typical Lake across China Based on the WRF-CMAQ model

  • FAN Yang-cheng1, LIU Ping2
Author information +
文章历史 +

摘要

采用WRF-CMAQ模型模拟了2018年中国4个典型湖泊的不同形态氮(总氮TN、氧化态氮OXN、还原态氮REDN、硝酸盐氮NO-3-N、铵盐氮NH+4-N)的大气沉降通量。2018年青海湖、乌梁素海、东湖与太湖全年氮沉降通量分别为3.02、4.38、64.25、21.67 kgN/hm2,大气氮沉降贡献的氮负荷分别占乌梁素海、东湖与太湖总氮负荷的0.9%、22.3%、11.3%,东湖与太湖受大气氮沉降的影响程度显著高于青海湖和乌梁素海,表明大气氮沉降对发达地区湖泊的影响更应受到关注。通过敏感性试验分析大气氮沉降量的影响因子,结果显示含氮污染物的沉降速率对湖泊氮沉降通量的影响不明显,而含氮污染物排放速率降低20%,可使4个湖泊总氮沉降通量下降11%~22%,表明相对氮沉降速率、氮排放变化是影响氮沉降量的主要因素。本研究为进一步厘清大气氮沉降对湖泊总氮负荷的作用并制定有效控制措施提供了科学依据。

Abstract

The WRF-CMAQ model is employed to estimate the atmospheric nitrogen deposition of different nitrogen forms in four major lakes of China in 2018. The nitrogen forms include total nitrogen (TN), oxidized nitrogen (OXN), reduced nitrogen (REDN), nitrate nitrogen (NO-3-N), and ammonium nitrogen (NH+4-N). The annual nitrogen deposition fluxes in 2018 for Lake Qinghaihu, Lake Ulansuhai, Lake Donghu, and Lake Taihu were 3.02, 4.38, 64.25, and 21.67 kgN/hm2, respectively. Atmospheric nitrogen deposition contributed 0.9%, 22.3%, and 11.3% of the total nitrogen load in Lake Ulansuhai, Lake Donghu, and Lake Taihu, respectively. Lake Donghu and Lake Taihu were significantly more affected by atmospheric nitrogen deposition than Lake Qinghaihu and Lake Ulansuhai, highlighting the need for increased concern regarding atmospheric nitrogen deposition in developed regions. Sensitivity analysis revealed that the deposition velocity of nitrogen pollutants had an insignificant impact on local nitrogen deposition fluxes. However, reducing the source emission rate of nitrogen pollutants significantly decreased the nitrogen deposition fluxes. A 20% reduction in the source emission rate led to a decrease in nitrogen deposition fluxes by 11% to 22% in the four representative lakes. This demonstrates that nitrogen emission sources is the major factor that affects nitrogen deposition compared to deposition velocity. The findings provide a scientific foundation for further understanding the role of atmospheric nitrogen deposition in the total nitrogen load of lakes and developing effective control measures.

关键词

大气氮沉降 / 大气污染 / 数值模拟 / 氮污染 / 湖泊污染

Key words

atmospheric nitrogen deposition / atmospheric pollution / numerical modeling / nitrogen pollution / lake pollution

引用本文

导出引用
樊洋成, 刘萍. 基于WRF-CMAQ的中国典型湖泊大气氮沉降特征[J]. raybet体育在线 院报. 2024, 41(2): 27-36 https://doi.org/10.11988/ckyyb.20221297
FAN Yang-cheng, LIU Ping. Characteristics of Atmospheric Nitrogen Deposition in Typical Lake across China Based on the WRF-CMAQ model[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(2): 27-36 https://doi.org/10.11988/ckyyb.20221297
中图分类号: X511   

参考文献

[1] GALLOWAY J N,TOWNSEND A R,ERISMAN J W,et al.Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions[J]. Science, 2008, 320(5878): 889-892.
[2] GAO Y,JIA Y,YU G,et al. Anthropogenic Reactive Nitrogen Deposition and Associated Nutrient Limitation Effect on Gross Primary Productivity in Inland Water of China[J]. Journal of Cleaner Production,2019,208:530-540.
[3] VENKITESWARAN J J, SCHIFF S L, PATERSON M J,et al. Changing Nitrogen Deposition with Low δ15N–NH4+ and δ15N–NO-3 Values at the Experimental Lakes Area, Northwestern Ontario, Canada[J]. FACETS, 2017, 2(1): 249-266.
[4] 田 帅, 单旭东, 程启鹏, 等. 巢湖流域典型稻麦轮作区大气氮磷沉降及对巢湖影响的分析[J]. 江苏农业学报, 2022, 38(4): 958-966. (TIAN Shuai, SHAN Xu-dong, CHENG Qi-peng, et al. Analysis of Atmospheric Nitrogen and Phosphorus Deposition and Its Impact on Chao Lake in Typical Rice-wheat Rotation Area of Chao Lake Basin[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(4): 958-966.(in Chinese))
[5] LU C, TIAN H. Half-century Nitrogen Deposition Increase across China: A Gridded Time-series Data Set for Regional Environmental Assessments[J]. Atmospheric Environment, 2014, 97: 68-74.
[6] ZHAO Y, ZHANG L, CHEN Y,et al. Atmospheric Nitrogen Deposition to China: A Model Analysis on Nitrogen Budget and Critical Load Exceedance[J]. Atmospheric Environment, 2017, 153: 32-40.
[7] ZHAN X, BO Y, ZHOU F,et al. Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China[J]. Environmental Science & Technology, 2017, 51(12): 6699-6708.
[8] ZHANG Y, LIU C, LIU X,et al. Atmospheric Nitrogen Deposition around the Dongting Lake, China[J]. Atmospheric Environment, 2019, 207: 197-204.
[9] 刘超明,万献军,曾伟坤,等.洞庭湖大气氮湿沉降的时空变异[J].环境科学学报,2018,38(3):1137-1146.(LIU Chao-ming,WAN Xian-jun,ZENG Wei-kun,et al.Spatio-temporal Variability of Bulk Nitrogen Deposition in the Dongting Lake Region[J]. Acta Scientiae Circumstantiae,2018,38(3):1137-1146.(in Chinese))
[10]GENG J, LI H, CHEN D, et al. Atmospheric Nitrogen Deposition and Its Environmental Implications at a Headwater Catchment of Taihu Lake Basin, China[J]. Atmospheric Research, 2021, 256: 105566.
[11]TI C, GAO B, LUO Y,et al. Dry Deposition of N Has a Major Impact on Surface Water Quality in the Taihu Lake Region in Southeast China[J]. Atmospheric Environment, 2018, 190: 1-9.
[12]XU H, PAERL H W, QIN B,et al. Nitrogen and Phosphorus Inputs Control Phytoplankton Growth in Eutrophic Lake Taihu, China[J]. Limnology and Oceanography, 2010, 55(1): 420-432.
[13]杨龙元,秦伯强,胡维平,等.太湖大气氮、磷营养元素干湿沉降率研究[J].海洋与湖沼,2007,38(2):104-110.(YANG Long-yuan,QIN Bo-qiang,HU Wei-ping,et al. The Atmospheric Deposition of Nitrogen and Phosphorus Nutrients in Taihu Lake[J]. Oceanologia et Limnologia Sinica,2007,38(2):104-110.(in Chinese))
[14]许志波, 杨 仪, 卞 莉, 等. 太湖大气氮、磷干湿沉降特征[J]. 环境监控与预警, 2019, 11(4): 37-42. (XU Zhi-bo, YANG Yi, BIAN Li, et al. Dry and Wet Atmospheric Deposition of Nitrogen and Phosphorus Taihu in Lake[J]. Environmental Monitoring and Forewarning, 2019, 11(4): 37-42.(in Chinese))
[15]ZHANG X, LIN C, ZHOU X, et al. Concentrations, Fluxes, and Potential Sources of Nitrogen and Phosphorus Species in Atmospheric Wet Deposition of the Lake Qinghai Watershed, China[J]. Science of the Total Environment, 2019, 682: 523-531.
[16]彭秋桐, 李中强, 邓绪伟, 等. 城市湖泊氮磷沉降输入量及影响因子: 以武汉东湖为例[J]. 环境科学学报, 2019, 39(8): 2635-2643. (PENG Qiu-tong, LI Zhong-qiang, DENG Xu-wei, et al. Nitrogen and Phosphorus Deposition in Urban Lakes and Its Impact Factors: A Case Study of East Lake in Wuhan[J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2635-2643.(in Chinese))
[17]JIAO L, ZHAO H, WANG S, et al. Characteristics of Temporal and Spatial Distribution of Phosphorus Loading in Erhai Lake in 2010[J]. Research of Environmental Sciences, 2013, 26(5): 534-539.
[18]黄明雨,吕兴菊,卫志宏,等.洱海大气氮素湿沉降特征[J].地球与环境,2022,50(4):448-457.(HUANG Ming-yu,LYU Xing-ju,WEI Zhi-hong,et al.Characteristics of Atmospheric Nitrogen wet Deposition in Erhai Lake[J]. Earth and Environment,2022,50(4): 1-10.(in Chinese))
[19]杜丹丹. 乌梁素海大气沉降规律及对水体营养状态的影响性分析[D].呼和浩特: 内蒙古农业大学, 2020. (DU Dan-dan. Analysis of Atmospheric Subsidence Law and Its Influence on Water Nutrition Status in the Lake Ulansuhai[D]. Hohhot: Inner Mongolia Agricultural University, 2020. (in Chinese))
[20]王锦旗,宋玉芝,黄 进.大气氮沉降对流域总贡献量估算方法研究[J].江苏农业科学,2020,48(11):246-250.(WANG Jin-qi,SONG Yu-zhi,HUANG Jin.Study on Estimation Method for Total Contribution of Atmospheric Nitrogen Deposition to Watershed[J]. Jiangsu Agricultural Sciences,2020,48(11):246-250.(in Chinese))
[21]常运华,刘学军,李凯辉,等.大气氮沉降数值模拟的演替进程与模型筛选[J].干旱区地理,2013,36(3):383-392.(CHANG Yun-hua,LIU Xue-jun,LI Kai-hui,et al. Numerical Modeling Atmospheric Nitrogen Deposition: Evolution Process and Models’ Screening[J]. Arid Land Geography,2013,36(3):383-392.(in Chinese))
[22]UCAR. Weather Research & Forecasting Model (WRF) Mesoscale & Microscale Meteorology Laboratory[EB/OL]. https:∥www.mmm.ucar.edu/models/wrf.
[23]USEPA. CMAQ: The Community Multiscale Air Quality Modeling System[EB/OL]. https:∥www.epa.gov/cmaq.
[24]王晓君, 马 浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1191-1199. (WANG Xiao-jun, MA Hao. Progress of Application of the Weather Research and Forecast(WRF) Model in China[J]. Advances in Earth Science, 2011, 26(11): 1191-1199.(in Chinese))
[25]皮子坤,贾廷贵,宫福强,等.基于CMAQ模型的大连市大气氮湿沉降模拟研究[J].环境科学学报,2014,34(12):3112-3118.(PI Zi-kun,JIA Ting-gui,GONG Fu-qiang,et al.Simulation of Atmospheric Nitrogen Wet Deposition in Dalian City Based on CMAQ Model[J].Acta Scientiae Circumstantiae,2014,34(12):3112-3118.(in Chinese))
[26]BUTLER T, MARINO R, SCHWEDE D,et al. Atmospheric Ammonia Measurements at Low Concentration Sites in the Northeastern USA: Implications for Total Nitrogen Deposition and Comparison with CMAQ Estimates[J]. Biogeochemistry, 2015, 122(2): 191-210.
[27]沈 傲, 周慧娴, 樊 琦, 等. 珠江三角洲地区冬季硫、氮干沉降的来源解析[J]. 中国环境科学, 2020, 40(12): 5142-5151. (SHEN Ao, ZHOU Hui-xian, FAN Qi, et al. Source Apportionment to Dry Deposition of Sulfur and Nitrogen in Winter in the Pearl River Delta Region[J]. China Environmental Science, 2020, 40(12): 5142-5151.(in Chinese))
[28]祁 瑛.青海湖实现“三增、三减、一不变”[N].青海法治报,2022-10-12(7).(QI Ying.Lake Qinghaihu Achieves “Three Increases, Three Decreases,and One Unchanged”[N].Qinghai Legal News,2022-10-12(7).(in Chinese))
[29]陆 玲.内蒙古水资源管理[M].牛玉国,主编.郑州:水利部黄河水利委员会黄河年鉴社,2019.(LU Ling. Water Resources Management in Inner Mongolia[M]. NIU Yu-guo. Zhengzhou: Yellow River Yearbook Society, Yellow River Water Conservancy Committee, Ministry of Water Resources,2019.(in Chinese))
[30]湖北省地方志编篡委员会. 湖北省志地理(上)[M]. 武汉: 湖北人民出版社, 1997. (Hubei Provincial Local Chronicles Compilation Committee. Geography of Hubei Province (I)[M]. Wuhan: Hubei People’s Publishing House. (in Chinese))
[31]吴文庆. 太湖健康状况报告[R]. 上海: 水利部太湖流域管理局, 2019. (WU Wen-qing. Health Status Report of Taihu Lake[R]. Shanghai: Taihu Basin Authority of Ministry of Water Resources, 2019. (in Chinese))
[32]National Centers for Environmental Prediction. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory[EB/OL]. Dataset. https:∥rda.ucar.edu/datasets/ds083.2/.
[33]HONG S, LIM J. The WRF Single-moment 6-class Microphysics Scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42: 129-151.
[34]ZHANG C, WANG Y. Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-mesh Regional Climate Model[J]. Journal of Climate, 2017, 30(15): 5923-5941.
[35]IACONO M J,DELAMERE J S,MLAWER E J,et al.Radiative Forcing by Long-lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models[J].Journal of Geophysical Research:Atmospheres,2008,113(D13):D13103.
[36]NAKANISHI M, NIINO H. An Improved Mellor-Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog[J]. Boundary-Layer Meteorology, 2006, 119(2): 397-407.
[37]ANGEVINE W M, MITCHELL K. Evaluation of the NCEP Mesoscale Eta ModelConvective Boundary Layer for Air Quality Applications[J]. Monthly Weather Review, 2001, 129(11): 2761-2775.
[38]国家气象科学数据中心[EB/OL]. http://data.cma.cn/. (National Meteorological Information Centre[EB/OL]. http://data.cma.cn/.(in Chinese))
[39]CARTER W P L. Development of the SAPRC-07 Chemical Mechanism[J]. Atmospheric Environment, 2010, 44(40): 5324-5335.
[40]APPEL K W, BASH J O, FAHEY K M,et al. The Community Multiscale Air Quality (CMAQ) Model Versions 5.3 and 5.3.1: System Updates and Evaluation[J]. Geoscientific Model Development, 2021, 14: 2867-2897.
[41]LI M, LIU H, GENG G,et al. Anthropogenic Emission Inventories in China: A Review[J]. National Science Review, 2017, 4(6): 834-866.
[42]ZHENG B, TONG D, LI M,et al. Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111.
[43]LI M, ZHANG Q, KUROKAWA J I,et al. MIX: A Mosaic Asian Anthropogenic Emission Inventory under the International Collaboration Framework of the MICS-Asia and HTAP[J]. Atmospheric Chemistry and Physics, 2017, 17(2): 935-963.
[44]中国环境监测总站[EB/OL]. http:∥www.cnemc.cn/. (China National Environmental Monitoring Centre[EB/OL]. http:∥www.cnemc.cn/.(in Chinese))
[45]李时蓓. 环境空气质量模型遴选工作指南[Z].北京: 环境保护部, 2015.(LI Shi-bei. Guidelines for the Selection of Ambient Air Quality Models[Z]. Beijing: Ministry of Ecology and Environment, 2015. (in Chinese))
[46]URANISHI K,IKEMORI F,NAKATSUBO R,et al.Identification of Biased Sectors in Emission Data Using a Combination of Chemical Transport Model and Receptor Model[J]. Atmospheric Environment, 2017, 166: 166-181.
[47]CHEN K,WANG P,ZHAO H,et al. Summertime O3 and Related Health Risks in the North China Plain: A Modeling Study Using Two Anthropogenic Emission Inventories[J]. Atmospheric Environment, 2021, 246: 118087.
[48]LIU X H, ZHANG Y, CHENG S H,et al. Understanding of Regional Air Pollution over China Using CMAQ, Part I Performance Evaluation and Seasonal Variation[J]. Atmospheric Environment, 2010, 44(20): 2415-2426.
[49]JIANG Y, LIN T, WU Z,et al. Seasonal Atmospheric Deposition and Air-Sea Gas Exchange of Polycyclic Aromatic Hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for Source-Sink Processes[J]. Atmospheric Environment, 2018, 178: 31-40.
[50]QIAO X,TANG Y,HU J,et al. Modeling Dry and Wet Deposition of Sulfate,Nitrate,and Ammonium Ions in Jiuzhaigou National Nature Reserve,China Using a Source-oriented CMAQ Model:Part I.Base Case Model Results[J]. Science of the Total Environment,2015,532:831-839.
[51]宋玉芝,秦伯强,杨龙元,等.大气湿沉降向太湖水生生态系统输送氮的初步估算[J].湖泊科学,2005,17(3):226-230.(SONG Yu-zhi,QIN Bo-qiang,YANG Long-yuan,et al. Primary Estimation of Atmospheric Wet Deposition of Nitrogen to Aquatic Ecosystem of Lake Taihu[J]. Journal of Lake Science,2005,17(3):226-230.(in Chinese))
[52]CHEN X, WANG Y H, YE C,et al. Atmospheric Nitrogen Deposition Associated with the Eutrophication of Taihu Lake[J]. Journal of Chemistry, 2018, Doi: 10.1155/2018/4017107.
[53]张佳颖,于兴娜,张毓秀,等.南京北郊大气降水中水溶性无机氮和有机氮沉降特征[J].环境科学,2022,43(7):3416-3422.(ZHANG Jia-ying,YU Xing-na,ZHANG Yu-xiu,et al.Deposition Characteristics of Water-soluble Inorganic Nitrogen and Organic Nitrogen in Atmospheric Precipitation in the Northern Suburbs of Nanjing[J]. Environmental Science,2022,43(7):3416-3422.(in Chinese))
[54]郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34(5): 1089-1097. (ZHENG Dan-nan, WANG Xue-song, XIE Shao-dong, et al. Simulation of Atmospheric Nitrogen Deposition in China in 2010[J]. China Environmental Science, 2014, 34(5): 1089-1097.(in Chinese))
[55]李宇辉. 大气沉降对湖泊氮磷污染负荷贡献及不同沉水植物组合对水质净化效果研究[D]. 武汉: 湖北大学, 2020. (LI Yu-hui. Contribution of Atmospheric Deposition to Nitrogen and Phosphorus Pollution Load of Lakes and Effects of Different Combinations of Submerged Plants on Water Purification[D]. Wuhan: Hubei University, 2020. (in Chinese))
[56]王焕晓, 庞树江, 王晓燕, 等. 小流域大气氮干湿沉降特征[J]. 环境科学, 2018, 39(12): 5365-5374. (WANG Huan-xiao, PANG Shu-jiang, WANG Xiao-yan, et al. Dry and Wet Deposition of Atmospheric Nitrogen in Small Catchments[J]. Environmental Science, 2018, 39(12): 5365-5374.(in Chinese))
[57]任加国, 贾海斌, 焦立新, 等. 滇池大气沉降氮磷形态特征及其入湖负荷贡献[J]. 环境科学, 2019, 40(2): 582-589. (REN Jia-guo, JIA Hai-bin, JIAO Li-xin, et al. Characteristics of Nitrogen and Phosphorus Formation in Atmospheric Deposition in Dianchi Lake and Their Contributions to Lake Loading[J]. Environmental Science, 2019, 40(2): 582-589.(in Chinese))

基金

国家重点研发计划项目(2020YFC1806700)

PDF(2566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map