PDF(2315 KB)
PDF(2315 KB)
PDF(2315 KB)
气候变化下多重不确定性对流域水文模拟的影响
Influence of Multiple Uncertainties on Watershed Hydrological Simulation under Climate Change
水文预报精度优劣与建模过程中的多源不确定性息息相关,且其交互效应将进一步增大预测不确定性。为了降低其影响,以泾河流域为例,利用拉丁超立方抽样和随机OAT方法(Latin Hypercube,LH-OAT),高效识别出SIMHYD水文模型中“有效”参数组;利用统计降尺度模型(Statistical Downscaling Model, SDSM)得到的气象要素驱动水文模型,揭示了多重不确定性对流域径流、土壤含水量模拟的影响;最后,采用方差分析方法动态量化评估了各源不确定性及其交互作用对水文预测不确定性的相对贡献。结果表明:流域年径流量呈逐年递减趋势;“有效”参数组可较好地重现流域水文过程,但其不确定性对模拟结果的不确定性影响明显。参数、气候模式和气候变化情景不确定性对月尺度径流和土壤含水量预测不确定性贡献占比分别为30%、40%、10%和75%、15%、5%;同时,汛前和汛后多重不确定性之间的交互作用明显增大。研究结果对于降低水文预测不确定性、提高水文模拟精度尤为重要。
The accuracy of hydrological forecasting is closely related to the multi-source uncertainty in the modeling process, and its interactive effects will further increase the prediction uncertainty. To reduce its impact, the Jinghe River basin was taken as the research object and the global sensitivity analysis method (LH-OAT) was used to effectively obtain the “available” parameter set of SIMHYD Hydrological model. Secondly, the impact of multiple uncertainties on runoff and soil moisture simulation was explored based on the hydrological model driven by meteorological elements obtained from the Statistical Downscaling Model (SDSM). Finally, the analysis of variance (ANOVA) method was used to dynamically quantify the relative contribution of various sources of uncertainty and their interactions to hydrological prediction uncertainty. The results show that the annual average runoff of the Jinghe River basin has a significant decreasing trend year by year. The “available” parameter group can better reproduce the hydrological process of the watershed, but its uncertainty has a significant impact on the uncertainty of the simulation results. The relative contributions of parameter, climate model, and climate change scenario uncertainties to monthly scale runoff are 30%, 40%, and 10%, respectively, and 75%, 15%, and 5%, respectively to soil water content. The interaction between multiple uncertainties before and after the flood has significantly increased. The research results are particularly important for reducing the uncertainty of hydrological prediction and improving the accuracy of hydrological simulation.
多重不确定性 / 气候变化 / 水文模型 / 交互作用 / 黄河流域
multiple uncertainties / climate change / hydrologic model / interaction effect / Yellow River Basin
| [1] |
王浩, 杨贵羽, 杨朝晖. 水土资源约束下保障粮食安全的战略思考[J]. 中国科学院院刊, 2013, 28(3):329-336,321.
(
|
| [2] |
刘悦, 刘欢欢, 陈印, 等. 2000-2018年中国植被光学厚度时空动态特征及驱动因素[J]. 地理学报, 2023, 78(3): 729-745.
与传统光学遥感指标相比,微波遥感指标—植被光学厚度(VOD)具有对云和大气敏感性低和不易饱和的优势,可用于监测植被总含水量和生物量的变化。本文基于不同频率的VOD数据集(VODCA C-VOD、X-VOD、Ku-VOD和AMSRU X-VOD),利用趋势分析和残差分析等方法研究了2000—2018年中国不同地区以及不同植被类型VOD的时空动态变化,并在全国及区域尺度上定量评估了气候变化和人类活动的相对贡献。结果表明:① 中国植被VOD呈极显著增加趋势,AMSRU X-VOD增加速率最快(0.062/10a),尤其是华东地区,而VODCA C-VOD增加速率最低(0.013/10a),其中西南地区增速最高;不同植被类型中,草丛的增速最快,其次为针叶林和灌丛。② 降水和辐射的增加促进了华北和西北地区VOD的增加,气温的贡献主要分布在华南和沿海地区,辐射对表征植被冠层的Ku-VOD和X-VOD的贡献较高。③ 不同数据集均表明人类活动是植被VOD增加的主要因素,VODCA C-VOD、Ku-VOD、X-VOD和AMSRU X-VOD的人类活动贡献率分别为171%、48%、43%和30%,在黄土高原、西南地区和东北平原尤为突出。本文研究结果为生态工程成效评价提供新的数据支持,并为未来生态系统管理和碳增汇提供科学依据。
(
Compared to traditional optical remote sensing indicators, the microwave remote sensing indicator vegetation optical depth (VOD) is less sensitive to clouds and atmosphere, and also less susceptible to saturation. The VOD is capable of monitoring changes in the total water content and biomass of vegetation. In this study, we analyzed the spatio-temporal dynamics of VOD in different regions of China and different vegetation types from 2000 to 2018 based on multiple frequencies of VOD datasets (VODCA C-VOD, X-VOD, Ku-VOD, and AMSRU X-VOD) using trend analysis and residual analysis. Then, the relative contributions of climate change and human activities at national and regional scales were quantitatively assessed. Results showed the following. (1) All of the VOD increased significantly over this period. AMSRU X-VOD had the fastest growth rate (0.062/10a), especially in eastern China. VODCA C-VOD increased at the lowest rate (0.013/10a), which showed the highest increasing rate in southwestern China. The fastest increasing trend of VOD was observed in grasslands, followed by needleleaf forests and scrubs. (2) The rising precipitation and radiation promoted the increase of VOD in northern and northwestern China. The temperature was closely related to the VOD changes in southern China and coastal areas. The contribution of radiation on Ku-VOD and X-VOD representing vegetation canopy was higher than that of precipitation and temperature. (3) According to different datasets, human activities were the primary factor for the increase in VOD. The contribution of human activities to VODCA C-VOD, Ku-VOD, X-VOD, and AMSRU X-VOD was 171%, 48%, 43%, and 30%, respectively, especially in the Loess Plateau, southwestern China, and Northeast China Plain. The outcomes of this study shed new light on the efficiency evaluation of ecological projects, which will provide guidance for future ecosystems management and environment protection in China. |
| [3] |
杨仕琪, 王冀, 窦银银, 等. 1916—2020年北京城市变迁及其与区域气候演化的关系[J]. 地理学报, 2023, 78(3): 620-639.
剖析百年尺度的城市变迁与气候要素变化对提升区域气候演变机理的认知具有重要意义。本文基于卫星遥感图像、社会经济数据和气象站点实测等数据,采用人机交互解译方法,刻画了1916—2020年北京城市扩展过程。利用滑动平均法和Mann-Kendall趋势检验方法,分析了关键气象要素的变化特征,从而揭示了百年尺度城市土地利用变化和社会经济发展与区域气候变化之间的关系。研究表明:1916—2020年北京城市土地面积增长了64.48倍,围绕中心地域呈圈层式蔓延扩展,呈现“缓慢—加速—减速”的扩展模式,城市扩展速度在2000—2010年达到峰值,为70.12 km<sup>2</sup>/a。1916—2020年北京的5 a滑动平均气温和年降水量分别为12.25 ℃和588.6 mm。随着城市发展,1916—2020年北京市5 a滑动平均气温以0.22 ℃/10a波动上升,1978年以来升温显著。年降水量则呈现波动下降趋势,速率为9.37 mm/10a。城市不透水面的加速扩张可能造成地表能量收支的改变,从而引发城市变暖。城市化率与气温升高具有协同关系,不同时段差异显著,1916—2020年北京城市化对区域升温的贡献为20.83%。另一方面,地表能量收支改变与空气污染物排放增加可能导致北京城市地区降水减少。本文结果可为提升北京城市变迁对区域气候演变影响过程和机制的认知提供科学参考。
(
Understanding the mechanisms of regional climate evolution requires extensive research on long-term urbanization and meteorological elements. The various data sources and an interactive interpretation method were utilized to reproduce the urban expansion in Beijing over the past century. The relationship between urban development and regional climate change was then determined by using the moving average method and the Mann-Kendall trend test. We found that the area of urban land in Beijing increased 64.48 times from 1916 to 2020, expanding in a circle around the central region. The rate of urban expansion peaked at 70.12 km2/a between 2000 and 2010. The average annual temperature and precipitation from 1916 to 2020 in Beijing were 12.25 ℃ and 588.6 mm, respectively. The 5-year moving average temperature fluctuated upward by 0.22 ℃/10a over the past century, with a notable warming trend since 1978. Precipitation trended downward at a rate of 9.37 mm/10a. The accelerated expansion of the impervious surface area in the city might lead to urban warming by altering the surface energy balance. The rate of urbanization and the regional temperature rise were positively correlated, with urbanization accounting for 20.83% of the regional warming in Beijing. Changes in the surface energy balance and an increase in air pollution emissions might result in a decline in precipitation. The results provide scientific resources for advancing knowledge of the processes and mechanisms by which urban development influences the regional climate change. |
| [4] |
张俊, 冯宝飞, 牛文静, 等. 基于误差分布估计的三峡水库入库洪水概率预报方法[J]. 湖泊科学, 2023, 35(2): 722-730.
(
|
| [5] |
李大洋, 姚轶, 梁忠民, 等. 基于变分贝叶斯深度学习的水文概率预报方法[J]. 水科学进展, 2023, 34(1):33-41.
(
|
| [6] |
|
| [7] |
张京, 马金锋, 马梅. 流域水文模型不确定性研究进展[J]. 人民黄河, 2022, 44(7): 30-36, 43.
(
|
| [8] |
屈博, 马红亮, 俞彦, 等. 基于TIGGE资料的降水预报不确定性传递研究[J]. 节水灌溉, 2022(5): 14-19.
揭示降水不确定性在水文过程中的传递特征是气象水文耦合预报研究的关键环节,可为进一步加强流域水资源管理、提高农业灌溉保障能力提供有力支撑。利用TIGGE 资料中心CMA、CMC、ECMWF、NCEP和UKMO 5个模式降水集合预报(127个集合成员)驱动分布式新安江模型,生成2010-2013年涪江流域汛期径流集合预报。在此基础上,从精度和锐度两个方面,定量分析降水不确定性在水文过程的传递特征及其随预见期的变化规律。结果表明,降水预报经过水文过程后,其精度和锐度在不同年份、不同预见期均大幅提升。但随着预见期的延长,对精度的改进效果逐渐减小,而对锐度的改进效果则不断增大。
(
Revealing the propagation characteristics of precipitation uncertainty in hydrological process is the key element of hydro-meteorological forecasts, which can provides strong support for the improvements of watershed water resources management and agricultural irrigation. In this paper, the precipitation prediction from 5 different TIGGE center(CMA、CMC、ECMWF、NCEP and UKMO) were used to drive the distributed Xinanjiang model to generate the runoff ensemble forecast in flood season of The Fujiang River basin from 2010 to 2013.On this foundation, the propagation characteristics and temporal changes of precipitation uncertainty were analyzed quantitatively in accuracy and sharpness. The results indicated that both accuracy and sharpness of precipitation forecasts were significantly improved after hydrological process in different years and different prediction periods. However, with the prolongation of prediction period, the improvement effect on precision decreases gradually, while the improvement effect on sharpness increases continuously. |
| [9] |
马秋梅, 熊立华, 张验科, 等. 分析TRMM卫星降水在径流模拟中的输入不确定性[J]. 北京师范大学学报(自然科学版), 2020, 56(2): 298-306.
(
|
| [10] |
陈浩, 许月萍, 郑超昊, 等. 厄尔尼诺-南方涛动影响下月尺度水文模型参数可移植性[J]. 同济大学学报(自然科学版), 2023, 51(1):75-82.
(
|
| [11] |
谢子琪, 袁飞, 周梦瑶, 等. 集合CMIP6多气候模式的南水北调中线工程水源区径流预估[J]. 水电能源科学, 2022, 40(7):19-22,9.
(
|
| [12] |
李文. 黑河流域上游历史及未来极端径流特征研究[D]. 北京: 中国地质大学(北京), 2021.
(
|
| [13] |
陶望雄, 张杰, 王青, 等. 泾河张家山站水沙多时间尺度分析及输沙量模拟[J]. raybet体育在线
院报, 2016, 33(2):10-13.
为了掌握泾河水沙变化的基本规律,运用EMD方法对泾河张家山水文站1958—2011年的年径流量及年输沙量序列分别进行了多时间尺度分解,依据实测年输沙量数据,应用时间序列分析方法建立了年输沙量模拟模型。泾河年径流和年输沙量的时间序列均可分解为3个不同波动周期的振荡分量和一个递减的趋势分量;年输沙量模型适用性较好,且模拟精度较高,可应用于年输沙量预测。泾河水沙多时间尺度变化的特征分析和输沙量预测可为泾河水资源规划提供科学依据。
(
In order to obtain the basic law of water and sediment variation in Jinghe River, we decompose series of annual runoff and sediment discharge into multiple temporal scales by EMD method, with Zhangjiashan station from 1956 to 2011 as an example. Firstly, we establish a simulation model of annual sediment discharge according to measured data and time series analysis. Then, the results show that both of the annual runoff and sediment series can be decomposed into 3 fluctuation components with different periods and a degressive tendency residual component. Furthermore, the model is of good suitability and high accuracy, and it can be used to predict annual sediment discharge. Finally, we can carry out characteristic analysis on multiple temporal scales of runoff and sediment and prediction of annual sediment discharge to provide a scientific basis for water resources planning in Jinghe River.
|
| [14] |
李鸿雁, 李悦, 刘海琼, 等. SIMHYD模型在松花江流域应用的适应性分析[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1502-1510.
(
|
| [15] |
娄伟, 李致家, 刘玉环. 多模式下泾河上游流域未来降水变化预估[J]. 南水北调与水利科技(中英文), 2020, 18(6): 1-16.
(
|
| [16] |
张丹, 梁瀚续, 何小聪, 等. 基于CMIP6的金沙江流域径流及水文干旱预估[J]. 水资源保护, 2023, 39(6):53-62.
(
|
| [17] |
周帅. 变化环境下黄河干流梯级水库群适应性调度关键问题研究[D]. 西安: 西安理工大学, 2022.
(
|
| [18] |
刘洪波, 菅浩然. 气候和下垫面要素对泾河流域径流变化的影响[J]. 人民黄河, 2021, 43(1): 22-28.
(
|
| [19] |
徐会军, 陈洋波, 李昼阳, 等. 基于LH-OAT分布式水文模型参数敏感性分析[J]. 人民长江, 2012, 43(7):19-23.
(
|
| [20] |
李杨, 朱仲元, 贾德斌, 等. SWBM模型在锡林河流域气候变化影响评价中的应用[J]. 水文, 2013, 33(2):39-42,50.
(
|
| [21] |
田昊玮, 陈伏龙, 龙爱华, 等. 博尔塔拉河源流区径流对气候变化的响应及预测[J]. 干旱区地理, 2023, 46(9):1432-1442.
冰川径流是西北干旱区径流的主要组成部分,研究未来气候变化对冰川径流的影响对西北干旱区径流至关重要。以博尔塔拉河上游源流区为研究区,构建嵌入冰川模块的SWAT模型,模拟温泉水文站1972—2018年月径流过程,并在此基础上研究了气候变化情景下(RCP4.5和RCP8.5)未来(2020—2050年)气候变化对冰川径流的影响。结果表明:SWAT模型能够很好地模拟源流区径流变化过程,在整个模拟期间,径流数据的纳什系数(NSE)为0.82,偏差百分比(PBIAS)为-3.22%,均方根误差与实测值标准差的比值(RSR)为0.42,决定性系数(R<sup>2</sup>)为0.84,模型性能评定为优。根据CMIP5气候模式2种情景的模拟结果,2种情景模拟未来总径流都呈现出增加趋势,分别将以0.31×10<sup>8</sup> m<sup>3</sup>·(10a)<sup>-1</sup>和0.40×10<sup>8</sup> m<sup>3</sup>·(10a)<sup>-1</sup>的速度继续增加,冰川径流占比较历史时期的27.61%分别提升了4.84%和9.38%。冰川径流增加是径流量增加的主要原因。通过相关性分析发现,随着气温的升高,冰川消融时间提前,冰川消融加速,冰川积累时间减少,导致冰川面积进一步的缩减。研究结果可为博河地区水文资料历史变化、未来演变趋势和预防气候变化带来的潜在风险提供依据。
(
|
| [22] |
宋益涛, 王双涛, 罗平平, 等. 变化环境下径流演变的研究方法进展[J]. 水资源与水工程学报, 2022, 33(2):68-76,84.
(
|
| [23] |
陈长征, 甘容, 杨峰, 等. 基于SWAT的径流模拟参数优化方案及不确定性分析[J]. 人民长江, 2022, 53(7):82-89.
(
|
/
| 〈 |
|
〉 |