卜形岔管水力特性及体型优化

董静, 周王子, 姜治兵, 翟泽冰, 贺尧

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (10) : 94-100.

PDF(3061 KB)
PDF(3061 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (10) : 94-100. DOI: 10.11988/ckyyb.20240527
水力学

卜形岔管水力特性及体型优化

作者信息 +

Hydraulic Characteristics and Optimization of Bifurcated Pipe

Author information +
文章历史 +

摘要

在引调水工程中,岔管是输水管线中的重要结构,常用于连接大型主管道和小型分支管道。为改善卜形岔管局部低压现象,提出在不改变岔管分岔角角度的前提下,设置椭圆弧形倒角方案。采用数值模拟方法分别对圆弧形倒角岔管和椭圆弧形倒角岔管的水流流态、压强分布及水头损失进行研究,并结合物理模型试验,验证数值模拟结果的可靠性。研究结果表明,主管单独运行时,与圆弧形倒角岔管相比,椭圆弧形倒角岔管因空间开阔、过流断面变化平缓,其内部水流流态更平顺,水头损失系数更小,较圆弧形倒角岔管降低了6.9%,分岔角局部低压分布明显改善,最小压强较圆弧形倒角岔管提高了1.47 m水头;支管单独运行时,二者内部水流流态、压力分布规律基本一致,椭圆弧形倒角岔管水头损失系数较圆弧形倒角岔管增加了5.7%。研究成果可为岔管设计提供参考。

Abstract

Bifurcated pipes constitute an essential part of water conveyance pipeline in water diversion projects. They are commonly used to connect large major pipes with branch pipes.To address the local low-pressure issue in bifurcated pipes, we propose using an elliptical arc chamfer design while maintaining the existing bifurcation angle. We investigated the flow pattern, pressure distribution, and head loss in both circular arc and elliptical arc chamfered bifurcated pipes using numerical simulations and verified the reliability of numerical results via model experiments. Our results reveal that, with only the main pipe in operation, the elliptical arc chamfered bifurcated pipe exhibits smoother water flow pattern and a 6.9% reduction in head loss coefficient compared to circular arc due to larger space and gradual change of flow section. This design significantly improves the local low-pressure distribution at the bifurcation, raising the minimum pressure by 1.47 meters compared to the circular arc chamfered pipe.On the contrary, when only the branch pipe is in operation, both circular arc and elliptical designs show similar internal flow pattern and pressure distributions; however, the head loss coefficient for elliptical arc chamfered pipe is 5.7% higher than that of the circular arc chamfered pipe.

关键词

卜形岔管 / 椭圆弧形倒角 / 水力特性 / 数值模拟 / 模型试验 / 引调水工程

Key words

bifurcated pipe / elliptical arc chamfer / hydraulic characteristics / numerical simulation / model experiment / water diversion project

引用本文

导出引用
董静, 周王子, 姜治兵, . 卜形岔管水力特性及体型优化[J]. raybet体育在线 院报. 2024, 41(10): 94-100 https://doi.org/10.11988/ckyyb.20240527
DONG Jing, ZHOU Wang-zi, JIANG Zhi-bing, et al. Hydraulic Characteristics and Optimization of Bifurcated Pipe[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(10): 94-100 https://doi.org/10.11988/ckyyb.20240527
中图分类号: TV131 (水力理论、计算、实验)   

参考文献

[1]
中华人民共和国国务院. 国家水网建设规划纲要[J]. 中国水利, 2023(11): 1-7.
(State Council of the People’s Republic of China. Outline of National Water Network Construction Plan[J]. China Water Resources, 2023(11): 1-7. (in Chinese))
[2]
顾欣欣, 万五一, 张博然. 大变径卜型岔管的水力特性及优化研究[J]. 水力发电学报, 2018, 37(1): 62-69.
(GU Xin-xin, WAN Wu-yi, ZHANG Bo-ran. Hydraulic Characteristics and Optimization of Y-type Pipes with Large Diameter Difference[J]. Journal of Hydroelectric Engineering, 2018, 37(1): 62-69. (in Chinese))
[3]
代元. 抽水蓄能电站岔管年效益损失模型[J]. 陕西水利, 2024(1): 1-3, 7.
(DAI Yuan. Annual Benefit Loss Model of Turnout Pipe in Pumped Storage Power Station[J]. Shaanxi Water Resources, 2024(1):1- 3, 7. (in Chinese))
[4]
陈观福, 王金龙, 伍鹤皋. 内加强月牙肋钢岔管新型结构[J]. raybet体育在线 院报, 2001, 18(1): 23-26.
摘要
内加强月牙肋钢岔管具有水头损失小、受力比较均匀、外部无明显突出构造物、洞室开 挖断面较小等优点,因此广泛应用于地下埋藏式压力管道。但布置在地面上的明式月牙肋钢 岔管尚不多见,特别是当钢岔管承受的水头和直径较大时。以某水电工程钢岔管为例,以 满足结构受力和水力条件为前提,优化岔管体形,然后按照钢衬钢筋混凝土岔管结构进行了有 限元计算,得到了一些有益的结论。
(CHEN Guan-fu, WANG Jin-long, WU He-gao. New Type of Steel Bifurcation with Inner Crescent Rib[J]. Journal of Yangtze River Scientific Research Institute, 2001, 18(1): 23-26. (in Chinese))
Steel bifurcations with inner crescent rib are widely used in the penstocks embe d ded in rock because of the advantages of less water head loss,good bearing condi tion,smooth outline and less excavation dimensions.However,it is very unpopular for this kind of bifurcation to be laid above the ground surface,especially in t he case of large diameter and high water head. Through an illustration of the st eel bifurcation of some hydroeletric project,the optimization of its configurati on are carried out by using finite element analysis under the condition of satis fying the requirement of water flow and structural loadcarrying capacity and some conclusions are obtained.  
[5]
汪碧飞, 李勇泉, 陈美娟, 等. 埋藏式月牙肋岔管内压分担比研究[J]. raybet体育在线 院报, 2021, 38(6): 123-127.
摘要
采用三维有限元模拟了岔管、回填混凝土与围岩的联合承载体,分析了回填混凝土的塑性性质、岔管与回填混凝土之间的缝隙及围岩力学性能等重要因素对联合承载体的影响。结果表明:考虑回填混凝土的塑性性质后,围岩分担率下降;缝隙宽度超过一定值后,回填混凝土与围岩对岔管约束急剧下降,围岩分担率接近0;围岩力学性能越好,围岩分担率越高;考虑联合承载后,水压试验时岔管可能不足以承担1.25倍的设计压力,应根据岔管钢材允许应力研究水压试验值。研究成果为钢岔管与围岩共同分担内水压力的埋藏式月牙肋岔管的设计提供了参考。
(WANG Bi-fei, LI Yong-quan, CHEN Mei-juan, et al. Sharing Ratio of Internal Pressure of Embedded Crescent-rib Bifurcated Pipe[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(6): 123-127. (in Chinese))
The combined bearing structure of crescent-rib bifurcated pipe, backfill concrete and surrounding rock is simulated using 3D finite element method. The important roles including the plastic characteristics of backfill concrete, the gap between crescent-rib bifurcated pipe and backfill concrete, and the mechanical properties of surrounding rock are analyzed. Results showed that the sharing ratio of surrounding rock decreased with the plastic properties of backfill concrete into consideration; when the gap width exceeded a certain value, the constraint of backfill concrete and surrounding rock to crescent-rib bifurcated pipe plummeted, and the sharing ratio of surrounding rock was close to zero; the better the mechanical properties of surrounding rock, the higher the sharing ratio of surrounding rock. In the presence of combined bearing, the crescent-rib bifurcated pipe may not be able to bear 1.25 times of the design pressure in hydraulic test. Therefore, the allowable stress of crescent-rib bifurcated pipe must be considered in hydrostatic test. The research findings provide reference for design of embeded crescent-rib bifurcated pipe with surrounding rock sharing the internal pressure.
[6]
代元, 方建银, 吴阳, 等. 抽水蓄能电站岔管导流板体型研究[J]. 水力发电学报, 2021, 40(4): 43-49.
(DAI Yuan, FANG Jian-yin, WU Yang, et al. Study on Body Shapes of Bifurcated Pipe Guide Plate for Pumped-storage Power Stations[J]. Journal of Hydroelectric Engineering, 2021, 40(4): 43-49. (in Chinese))
[7]
信佰伶. 抽水蓄能电站岔管导流板偏转角优化设计研究[J]. 东北水利水电, 2022, 40(7): 5-7.
(XIN Bai-ling. Study on Optimal Design of Deflection Angle of Diversion Plate of Bifurcated Pipe in Pumped Storage Power Station[J]. Water Resources & Hydropower of Northeast China, 2022, 40(7): 5-7. (in Chinese))
[8]
吴亮. 某水库发电引水洞岔管体型优化研究[J]. 广东水利水电, 2022(5):18-24.
(WU Liang. Optimum Research on Bifurcation Type of Power Generation Diversion Tunnel in a Reservoir[J]. Guangdong Water Resources and Hydropower, 2022 (5):18-24. (in Chinese))
[9]
刘沛清, 屈秋林, 王志国, 等. 内加强月牙肋三岔管水力特性数值模拟[J]. 水利学报, 2004, 35(3):42-46.
(LIU Pei-qing, QU Qiu-lin, WANG Zhi-guo, et al. Numerical Simulation on Hydrodynamic Characteristics of Bifurcation Pipe with Internal Crescent Rib[J]. Journal of Hydraulic Engineering, 2004, 35(3): 42-46. (in Chinese))
[10]
高亚楠, 郑源, 杨为城, 等. 基于水流数值模拟的岔管体型优化[J]. 水电能源科学, 2011, 29(2): 56-58.
(GAO Ya-nan, ZHENG Yuan, YANG Wei-cheng, et al. Optimization of Bifurcated Pipe Based on Numerical Simulation of Water Flow[J]. Water Resources and Power, 2011, 29(2): 56-58. (in Chinese))
[11]
于航, 章晋雄, 张宏伟, 等. 抽水蓄能电站卜型岔管水力优化[C]//中国水利学会.中国水利学会2021学术年会论文集第五分册. 郑州: 黄河水利出版社, 2021:174-182.
(YU Hang, ZHANG Jin-xiong, ZHANG Hong-wei, et al. Hydraulic Optimization of U-shaped Bifurcated Pipes in Pumped Storage Power Stations[C]// Chinese Hydraulic Engineering Society.Proceedings of the 2021 Academic Annual Conference of the Chinese Hydraulic Engineering Society. Zhengzhou: Yellow River Water Conservancy Press, 2021:174-182. (in Chinese))
[12]
程丹, 苏凯, 石怡安. 钢筋混凝土岔管结构优化[J]. 水利水电科技进展, 2015, 35(1): 89-94.
(CHENG Dan, SU Kai, SHI Yi-an. Structure Optimization on Reinforced Concrete Bifurcation[J]. Advances in Science and Technology of Water Resources, 2015, 35(1): 89-94. (in Chinese))
[13]
丁宇明, 胡建国. 岔管过渡带曲面计算机辅助几何设计[J]. 武汉水利电力学院学报, 1990(1):71-82.
(DING Yu-ming, HU Jian-guo. The Computer Aided Geometric Design (CAGD) on the Curved Surface of Forked Pipe Transition Zone[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1990(1):71-82. (in Chinese))
[14]
汪洋, 苏凯, 伍鹤皋, 等. 钢筋混凝土岔管锐角区修圆优化的压强分布不均匀性研究[J]. 四川大学学报(工程科学版), 2015, 47(3):6-13.
(WANG Yang, SU Kai, WU He-gao, et al. Study on Asymmetrical Pressure Distribution of Rounding Optimization on Reinforced Concrete Bifurcation Acute-angle-region[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(3):6-13. (in Chinese))
[15]
任炜辰, 戴熙武, 鲍世虎, 等. 卜形岔管水力特性研究[J]. 水力发电学报, 2022, 41(4): 28-36.
(REN Wei-chen, DAI Xi-wu, BAO Shi-hu, et al. Hydraulic Characteristics of Bifurcated Pipes[J]. Journal of Hydroelectric Engineering, 2022, 41(4): 28-36. (in Chinese))
[16]
XIONG Li-fang, LIN Yuan, LI Shi-wu. K-ε Turbulent Model and Its Application to the FLUENT[J]. Industrial Heating, 2007(4): 13-15.

基金

武汉市知识创新专项曙光计划项目(2023020201020361)
中国中铁股份有限公司科技研究开发计划项目(2022-重大-15)
raybet体育在线 基本科研业务费项目(CKSF2023317+SL)

编辑: 占学军
PDF(3061 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map