超深基坑吊脚桩局部稳定性分析

孙昌利, 陈富强, 李支令, 贾恺

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (10) : 133-139.

PDF(1150 KB)
PDF(1150 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (10) : 133-139. DOI: 10.11988/ckyyb.20240025
岩土工程

超深基坑吊脚桩局部稳定性分析

作者信息 +

Local Stability of End-suspended Piles in Ultra-deep Foundation Pits

Author information +
文章历史 +

摘要

目前基坑设计中对于吊脚桩预留岩肩的宽度和支护桩的嵌固深度取值大多从对上部支护结构内力及变形的影响角度出发,往往忽略了支护结构底部附近的局部稳定性问题。依托珠江三角洲水资源配置工程超深竖井项目,提出了外倾结构面下或破碎岩体吊脚桩基坑可能存在的3种破坏模式,采用极限平衡法分别给出了不同破坏模式下稳定安全系数的计算方法。同时针对不同破坏模式下,影响稳定安全系数的参数如岩层的埋深、结构面的倾角和力学参数、岩肩宽度、岩肩深度等进行了分析,结果表明外倾结构面倾角、结构面或岩体的力学参数对稳定安全系数影响较大。研究成果可为类似工程提供参考。

Abstract

At present, the reserved rock shoulder width of end-suspended piles and the embedded depth of support piles in foundation pits are mostly determined from the impact on internal forces and deformations of the upper support structure. This approach often overlooks the local stability issues near the bottom of the support structure. Based on the ultra-deep shaft project of the Pearl River Delta Water Resources Allocation Project, we identified three potential failure modes for end-suspended pile foundation pits with inclined structural planes or fractured rock masses. We employed the limit equilibrium method to calculate the stability safety factor and analyze the impact of various parameters on the safety factor under different failure modes, such as rock layer burial depth, mechanical properties of structural planes, rock shoulder width, and rock shoulder depth. Our findings reveal that the inclination angle of outward-dipping structural planes and the mechanical properties of structural planes or rock masses significantly affect the stability safety factor. This study offers valuable insights for similar projects.

关键词

深基坑 / 竖井 / 吊脚桩 / 结构面 / 极限平衡法 / 安全系数

Key words

deep foundation pit / vertical shaft / end-suspended pile / structural plane / limit equilibrium method / safety factor

引用本文

导出引用
孙昌利, 陈富强, 李支令, . 超深基坑吊脚桩局部稳定性分析[J]. raybet体育在线 院报. 2024, 41(10): 133-139 https://doi.org/10.11988/ckyyb.20240025
SUN Chang-li, CHEN Fu-qiang, LI Zhi-ling, et al. Local Stability of End-suspended Piles in Ultra-deep Foundation Pits[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(10): 133-139 https://doi.org/10.11988/ckyyb.20240025
中图分类号: TU470 (地基和基础的理论和计算)   

参考文献

[1]
叶建忠, 李永明, 邱凡. 组合支护结构在深圳地铁基坑工程中的应用[J]. 工业建筑, 2014, 44 (增刊1):752-758.
(YE Jian-zhong, LI Yong-ming, QIU Fan. Application of Composite Support Pattern of Inner Brace and Prestressed Anchor in Deep Foundation Pits of Shenzhen Subway[J]. Industrial Construction, 2014,44 (Supp.1): 752-758. (in Chinese))
[2]
何健, 孔维一. 吊脚嵌岩灌注桩基坑支护与开挖技术[J]. 地下空间与工程学报, 2015, 11(增刊2):657-660.
(HE Jian, KONG Wei-yi. Construction Technique of Outseam Rock-socketed Bored Pile for Foundation[J]. Chinese Journal of Underground Space and Engineering Pit Supporting and Excavation, 2015,11 (Supp.2):657-660. (in Chinese))
[3]
陈志伟. 基坑围护结构吊脚桩施工处理实例[J]. 广东土木与建筑, 2005, 12(6): 5-6.
(CHEN Zhi-wei. Construction of Cast-in-place Pile of Building Enclosure for Foundation Pit[J]. Guangdong Architecture Civil Engineering, 2005, 12(6): 5-6. (in Chinese))
[4]
岳建国, 齐云龙. 深基坑吊脚桩的理论计算及数值模拟研究[J]. 路基工程, 2016(1):96-101.
(YUE Jian-guo, QI Yun-long. Research on Theoretical Calculation and Numerical Simulation of End-suspended Pile in Deep Foundation Pit[J]. Subgrade Engineering, 2016(1):96-101. (in Chinese))
[5]
许满吉. 吊脚连续墙在深圳地铁5号线深基坑施工中的应用[J]. 铁道标准设计, 2011, 55(8):89-93.
(XU Man-ji. Application of Partial Diaphragm Walls in the Deep Foundation Pits on Shenzhen Metro Line 5[J]. Railway Standard Design, 2011, 55(8):89-93. (in Chinese))
[6]
张涵. 福建地区花岗岩二元岩土基坑支护结构研究及应用[J]. 广东土木与建筑, 2019, 26(3): 49-53.
(ZHANG Han. Research and Application of Granite Dualistic Foundation Pit in Fujian Province[J]. Guangdong Architecture Civil Engineering. 2019, 26(3): 49-53. (in Chinese))
[7]
金雪峰. 某紧临地铁车站土岩基坑设计与变形规律研究[J]. 地下空间与工程学报, 2021, 17(3):815-824,871.
摘要
广州某紧临地铁车站土岩组合深基坑,开挖深度大,周边环境复杂,变形控制要求非常严格。依据实际监测数据,详细分析了基坑施工各阶段的围护结构变形、土岩体侧移、支撑轴力、锚索拉力及周边环境沉降的变化规律。分析结果表明:围护墙与外侧土岩体最大水平位移均发生在土岩结合面附近;基坑开挖结束至底板施工期间,围护墙及外侧土岩体水平变形呈蠕变特点;地下室采用的“复合墙”及跳仓法施工技术,使施工完毕后的围护墙、土岩体水平位移均发生了明显回弹,最大水平位移约为开挖至基底时的40%~60%;开挖引起的周边地面沉降最大值发生在离坑边0.5倍开挖深度附近,沉降值约为邻近围护墙最大水平位移的0.47倍;条件允许时,土岩组合基坑可优先采用支撑+锚索组合支护方案。本工程的监测数据相互印证,揭示了该土岩深基坑在各种条件下的实际工作状况,可为类似情况深基坑的设计与施工提供参考。
(JIN Xue-feng. Study on Design and Deformation Law of Soil-rock Composite Foundation Pit Close to Metro Station[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(3):815- 824,871. (in Chinese))
A deep foundation pit of soil-rock combination adjacent to metro station is located in Guangzhou. The excavation depth is large, and the surrounding environment is complex, and the deformation control requirements are very strict. Based on the actual monitoring data, the variation laws of surrounding structure deformation, lateral displacement of soil and rock mass, support axial force, anchor cable tension and surrounding environment settlement in each stage of foundation pit construction were analyzed in detail. The results show that the maximum horizontal displacement of the retaining wall and the surrounding soil and rock mass occurs near the soil-rock interface; from the end of foundation pit excavation to the construction of floor, the horizontal deformation of retaining wall and lateral soil and rock mass presents creep characteristics; the construction technology of "composite wall" and the hopping method adopted in basement make the horizontal displacement of retaining wall, soil, and rock mass rebound obviously after construction, and the maximum horizontal displacement is about 40%~60% when the basement is excavated; the maximum ground subsidence caused by excavation occurs near the excavation depth of 0.5 times from the pit edge, and the settlement value is about 0.47 times of the maximum horizontal displacement of the adjacent retaining wall. If the conditions permit, the support + anchor cable combination support scheme can be preferred for the soil-rock composite foundation pit. The monitoring data of this project confirm each other and reveal the actual working conditions of this deep foundation pit under various conditions, which can provide reference for the design and construction of similar deep foundation pit.
[8]
武军, 杨忠勇, 廖少明, 等. 土岩复合地层吊脚桩支护结构力学分析与优化设计[J]. 隧道建设(中英文), 2018, 38(增刊2): 80-86.
(WU Jun, YANG Zhong-yong,LIAO Shao-ming. Mechanical Analysis and Design Optimization of End-suspended Piles of Deep Foundation Pit in Soil-rock Composite Strata Tunnel Construction[J]. 2018, 38 (Supp.2): 80-86. (in Chinese))
[9]
郑祖静. 土岩结构深基坑吊脚桩支护体系变形研究[D]. 武汉: 武汉理工大学, 2018.
(ZHENG Zu-jing. Study on Deformation of Cantilever Pile Supporting System for Deep Foundation Pit with Soil-rock Structure[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese))
[10]
周沛栋, 彭祥, 杨光华, 等, 土岩组合地层圆形竖井结构设计方案优化分析[J]. 地下空间与工程学报, 2022, 18(增刊1):252-259.
(ZHOU Pei-dong, PENG Xiang, YANG Guang-hua. Analysis of Optimum Design Scheme of Circular Shaft in Soil and Rock Combination Stratum[J]. Chinese Journal of Underground Space and Engineering Pit Supporting and Excavation, 2022,18 (Supp.1):252-259. (in Chinese))
[11]
沈翔. 广州周大福金融中心基坑“吊脚桩”支护系统变性规律研究[D]. 广州: 广州大学, 2019:6.
(SHEN Xiang. Research on Deformation Regularity of the “End-suspended pile”Support System in Foundation Pit of CTF Finance Centre[D]. Guangzhou: Guangzhou University. (in Chinese))
[12]
张志明, 杨国平. 在大水平力作用下嵌岩桩设计计算方法的探讨[J]. 水运工程, 2002(7): 66-68.
(ZHANG Zhi-ming, YANG Guo-ping. Research on Design and Calculation Methods of Rock Socketed Piles under Large Horizontal Force[J]. Port & Waterway Engineering, 2002(7): 66-68. (in Chinese))
[13]
刘红军, 李东, 张永达, 等. 加锚双排桩与“吊脚桩”基坑支护结构数值分析[J]. 岩土工程学报, 2008, 30(增刊1): 226-230.
(Liu Hong-jun, LI Dong, ZHANG Yong-da, et al. Numerical Analysis of Supporting Structures of Anchored Double-row Piles and “End-suspended piles” in Foundation Pits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (Supp.1): 226-230. (in Chinese))
[14]
白晓宇, 张明义, 袁海洋. 移动荷载作用下土岩组合基坑吊脚桩变形分析[J]. 岩土力学, 2015, 36(4): 1167-1173, 1181.
(BAI Xiao-yu, ZHANG Ming-yi, YUAN Hai-yang. Deformation Analysis for the End-suspended Piles in the Combined Soil-rock Foundation Pits under Moving Loadings[J]. Rock and Soil Mechanics, 2015, 36(4):1167- 1173, 1181. (in Chinese))
[15]
严薇, 杨超, 左交明, 等. 土岩质基坑土层开挖稳定性计算[J]. 地下空间与工程学报, 2015, 11(1):246-250.
摘要
重庆地区土岩基坑随处可见,在涉及这类基坑的稳定性计算时,设计者往往强调的是整个基坑开挖面岩土体的稳定性,却忽视了基坑岩层以上土体的稳定性。针对此种情况,推导出了这类地质条件下的基坑在采取垂直开挖或放坡时,上层土体沿某一平面滑动的稳定性计算模式,并提出了土岩交界处以上土体稳定性的判别标准,以及可以采取的相应施工措施。通过工程实例与理论计算的对比分析,证明了此种判别标准和施工措施不仅能保证基坑的稳定性,同时也有利于降低工程造价,为今后类似工程提供有益的借鉴。
(YAN Wei, YANG Chao, ZUO Jiao-ming, et al. Calculation of Stability for Soil Excavation of Soil-rock Composite Pit[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1):246-250. (in Chinese))
Soil-rock composite pits can be seen everywhere in Chongqing city. However, when referring to the stability calculation of these pits,the designers tend to emphasize the stability of rock-soil mass on the excavation surface of the whole pit and ignore the stability of upper soil.In this paper,a stability calculation mode is deduced in the case that the upper soil slides along a plane when vertical excavation or step-slope excavation is taken for the pit. At the same time, the criterion of the stability of soil above the junction between the soil and rock is proposed, then,the measures dealing with these cases are also put forward. By comparing the result of theoretical calculation with engineering examples, the criterion and construction measures are proved to be effective both in the stability of the pits and in reducing project cost, which will hopefully serve as beneficial references to similar engineering.
[16]
JGJ 94—2008, 建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008.
(JGJ 94—2008, Technical Code for Building Pile Foundations[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese))

基金

国家自然科学基金项目(52078143)

编辑: 占学军
PDF(1150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map