一种大体积混凝土自动化通水温控方法

王明涛, 周骅, 赵麒

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (1) : 196-202.

PDF(6083 KB)
PDF(6083 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (1) : 196-202. DOI: 10.11988/ckyyb.20221106
水利信息化

一种大体积混凝土自动化通水温控方法

  • 王明涛1, 周骅1, 赵麒2
作者信息 +

A Method of Automated Water Temperature Control for Large Volume Concrete

  • WANG Ming-tao1, ZHOU Hua1, ZHAO Qi2
Author information +
文章历史 +

摘要

为了实现施工期大体积混凝土通水温控的自动化,根据《大体积混凝土温度测控技术规范》(GB/T 51028—2015),创新性地设计了一种基于自适应级联模糊控制算法的工业控制平台。硬件平台由控制柜、混水装置、温度采集网络组成,分别完成计算、执行、采集的工作;首次将自适应模糊控制应用到大体积混凝土温度控制中,将混凝土里表温差、温度变化率、进水温度3个关键参数综合考虑、复合计算,进行两级模糊推理,然后将推理结果作用到2个流量阀门,分别控制回水与冷水的混合比,得到满足温度标准的混合水,压入提前铺设好的混凝土冷却管道中,以此实时控制混凝土温度。通过建模仿真与工程实践验证了该控制策略能保持混凝土内部温度与进水温度差<25 ℃,在此基础上抑制混凝土温升,仿真的混凝土降温速度为1.69 ℃/d,实际工程应用的混凝土降温速度分别为1.59、1.56 ℃/d,均低于上限警告阈值2 ℃/d;仿真与实际工程数据均验证了该控制平台的有效性。

Abstract

To automatically control the water temperature of mass concrete during construction, we designed an innovative industrial control platform using the self-adaptive cascade fuzzy control algorithm based on the Technical Specification for Temperature Measurement and Control of Bulk Concrete (GB/T 51028-2015). The hardware platform includes a control cabinet, water mixing device, and temperature collection network, which perform the calculation, execution, and collection tasks respectively. For the first time, the self-adaptive fuzzy control is applied to the temperature control of mass concrete. It integrates and combines three key parameters, namely, the temperature difference between concrete lining and surface, temperature change rate, and inlet water temperature, for two-level fuzzy reasoning. The reasoning results are then utilized to control the mixing ratio of return water and cold water through two flow valves. This ensures the production of mixed water that meets the temperature standard, which is then pressed into the pre-laid cooling pipes to regulate the concrete temperature in real-time. Modeling simulation and engineering practice have validated that this control strategy maintains the temperature difference between the internal concrete temperature and the inlet water temperature below 25 ℃, effectively suppressing the temperature rise of the concrete. The simulation shows a concrete cooling rate of 1.69 ℃/day, while in actual engineering application, the cooling rates recorded are 1.59 and 1.56 ℃/day, which are below the upper warning threshold of 2 ℃/day. Consequently, both the simulation results and the data from actual engineering support the effectiveness of this control platform.

关键词

大体积混凝土 / 自动化 / 通水温控 / 模糊控制 / 混凝土温控仿真

Key words

mass concrete / automation / water temperature control / fuzzy control / simulation of concrete temperature control

引用本文

导出引用
王明涛, 周骅, 赵麒. 一种大体积混凝土自动化通水温控方法[J]. raybet体育在线 院报. 2024, 41(1): 196-202 https://doi.org/10.11988/ckyyb.20221106
WANG Ming-tao, ZHOU Hua, ZHAO Qi. A Method of Automated Water Temperature Control for Large Volume Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 196-202 https://doi.org/10.11988/ckyyb.20221106
中图分类号: TP273   

参考文献

[1] 罗福生, 林建滨, 张 亮, 等. 温控措施对大体积混凝土温度应力的影响[J]. 人民黄河, 2019, 41(11): 134-139. (LUO Fu-sheng, LIN Jian-bin, ZHANG Liang, et al. Analysis of the Effect of Temperature Control Measures on the Temperature Stress of Mass Concrete[J]. Yellow River, 2019, 41(11): 134-139.(in Chinese))
[2] 周建兵,黄耀英,何小鹏,等.向家坝导流底孔回填混凝土温度动态预测[J].raybet体育在线 院报,2015,32(2):119-122.(ZHOU Jian-bing,HUANG Yao-ying,HE Xiao-peng,et al. Dynamic Prediction of Concrete Temperature for the Plugging of Bottom Diversion Outlet of Xiangjiaba Hydropower Project[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(2): 119-122.(in Chinese))
[3] 辜光磊, 许 蔚, 吴永红, 等. 大体积混凝土水管冷却温控技术的优化[J]. 混凝土, 2021(11): 141-145. (GU Guang-lei, XU Wei, WU Yong-hong, et al. Optimization of Temperature Control Technology for Water Pipe Cooling of Mass Concrete[J]. Concrete, 2021(11): 141-145.(in Chinese))
[4] XU X D, YUE J C. Temperature Control of RCC Dam in Yongding Project[J]. Applied Mechanics and Materials, 2012, 238: 272-277.
[5] YANG Z G, SONG J L, HU Y F, et al. Discussion on Temperature Control Method of Cooling Water Pipe for Mass Concrete Construction[J]. E3S Web of Conferences, 2020, 165: 04037.
[6] 袁 葳, 李娇娜, 岳朝俊. 卡洛特水电站引水系统流道混凝土温控防裂研究[J]. 人民长江, 2022, 53(2): 153-157. (YUAN Wei, LI Jiao-na, YUE Chao-jun. Study on Temperature Control and Crack Prevention of Channel Concrete in Diversion System of Karot Hydropower Station[J]. Yangtze River, 2022, 53(2): 153-157.(in Chinese))
[7] 耿鸣山,林尔姬,吕建兵,等.大体积混凝土承台的水化热分析及温控研究[J].混凝土,2021(9):50-55.(GENG Ming-shan,LIN Er-ji,LÜ Jian-bing,et al. Hydration Heat Analysis and Temperature Control of Mass Concrete Pile Cap[J]. Concrete, 2021(9): 50-55.(in Chinese))
[8] 李 珍,熊泽斌.高寒地区水工混凝土防护修复技术与应用[J].raybet体育在线 院报,2022,39(6):1-8. (LI Zhen,XIONG Ze-bin.Protection and Repair Technology for Hydraulic Concrete in High and Cold Region:Research and Application[J]. Journal of Yangtze River Scientific Research Institute,2022,39(6):1-8.(in Chinese))
[9] 沈思朝, 颉志强, 王首豪. 基于数值仿真的水闸温控措施敏感性分析[J]. raybet体育在线 院报, 2022, 39(1): 146-154. (SHEN Si-chao, XIE Zhi-qiang, WANG Shou-hao. Sensitivity Analysis of Sluice Temperature Control Measures Based on Numerical Simulation[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 146-154.(in Chinese))
[10] SU J, ZUO G W, LI W. Temperature Control Technique and Analysis of Mass Concrete in the Pile Cap of Main Pier in Yangtze River Bridge[J]. Applied Mechanics and Materials, 2014, 587/588/589: 1407-1411.
[11] YANG Z G, SONG J L, HU Y F, et al. Discussion on Temperature Control Method of Cooling Water Pipe for Mass Concrete Construction[J]. E3S Web of Conferences, 2020, 165: 04037.
[12] 谭文鹏,王荣兴,赵 伟,等.基于温差控制的大体积混凝土智能温控系统及方法[J].公路,2020,65(10):211-215.(TAN Wen-peng,WANG Rong-xing,ZHAO Wei,et al. Intelligent Temperature Control System and Method for Mass Concrete Based on Temperature Difference Control[J]. Highway, 2020, 65(10): 211-215.(in Chinese))
[13] 王新刚, 杨润来, 陈智军. 大体积混凝土智能温控系统的研发及应用[J]. 水运工程, 2020(1): 118-121, 143. (WANG Xin-gang, YANG Run-lai, CHEN Zhi-jun. Development and Application of Intelligent Temperature Monitoring System for Mass Concrete[J]. Port & Waterway Engineering, 2020(1): 118-121, 143.(in Chinese))
[14] 林 鹏, 李庆斌, 周绍武, 等. 大体积混凝土通水冷却智能温度控制方法与系统[J]. 水利学报, 2013, 44(8): 950-957. (LIN Peng, LI Qing-bin, ZHOU Shao-wu, et al. Intelligent Cooling Control Method and System for Mass Concrete[J]. Journal of Hydraulic Engineering, 2013, 44(8): 950-957.(in Chinese))
[15] GB/T 51028—2015, 大体积混凝土温度测控技术规范[S]. 北京: 中国建筑工业出版社, 2016. (GB/T 51028—2015, Technical Specification for Temperature Measurement and Control of Bulk Concrete[S]. Beijing: China Architecture & Building Press, 2016. (in Chinese))
[16] 王立新.模糊系统与模糊控制教程[M]. 王迎军,译.北京: 清华大学出版社, 2003. (WANG Li-xin. A Course in Fuzzy Systems & Control[M]. Translated by WANG Ying-jun. Beijing: Tsinghua University Press, 2003.(in Chinese))
[17] 朱优平, 李同春, 冯树荣, 等. 大体积混凝土温控通水参数优选数学模型[J]. raybet体育在线 院报, 2015, 32(8): 126-130.(ZHU You-ping, LI Tong-chun, FENG Shu-rong, et al. Mathematical Model of Parameter Optimization for the Temperature Control of Mass Concrete[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(8): 126-130.(in Chinese))

基金

国家自然科学基金项目(U1836205);国家重点研发计划项目(2021YFB3101100);贵阳市科技计划项目([2021]1-5号)

PDF(6083 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map