为了量化分析三峡水库防洪库容的削峰能力,采用一种优化-拟合框架,对三峡水库历史入库洪水进行分析计算。通过设置三峡水库调度期内不同的最高水位方案,采用动态规划算法,对不同类型的入库洪水进行优化求解,得出三峡水库不同防洪库容方案下的洪峰削减流量,再用回归分析,量化三峡水库防洪库容的削峰能力。结果表明:对于多年场次洪水,三峡水库动用的防洪库容与其削减洪峰流量的相关关系可划分为3种类型:“先增后平”型、“分段递增”型和“线性递增”型。前2种类型存在拐点,建议动用在阈值以下的防洪库容,以充分发挥其高效削峰能力;最后1种类型可以结合洪峰削减目标,合理规划防洪库容进行调度。分析结果可为三峡水库科学合理有效分配防洪库容提供参考。
Abstract
To quantify the peak-cutting of flood control storage capacity of the Three Gorges Reservoir (TGR), an optimization-fitting framework was employed to calculate the historical storage flood data. Various maximum water level schemes during scheduling were set at first, and a dynamic planning algorithm within the framework was utilized to optimize and solve different incoming floods. By doing so, the flood peak reduction curves under different flood control storage capacities were obtained. Furthermore, regression analysis was employed to quantify the peak-cutting of flood control storage capacity of TGR. Results demonstrate that the correlation between the utilization of the flood control storage capacity in TGR and the reduction of flood peak flow can be classified into three types: “flat curve following an increment”, “segmented increment”, and “linear increment”. The first two types exhibit inflection points, suggesting that the flood control storage capacity should be maintained below a specific threshold to fully maximize its efficient peak-cutting capacity. As for the third type, the flood control storage capacity can be planned rationally for dispatching in line with the flood peak reduction target. The findings provide valuable insights for the scientific and rational allocation of flood control storage capacity in the Three Gorges Reservoir.
关键词
三峡水库 /
防洪效益 /
防洪调度 /
动态规划 /
削峰能力
Key words
Three Gorges Reservoir /
flood control benefits /
flood control dispatch /
dynamic programming /
flood peak attenuation capacity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 田国珍, 刘新立, 王 平, 等. 中国洪水灾害风险区划及其成因分析[J]. 灾害学, 2006, 21(2): 1-6.
[2] 朱丽江, 宁 磊, 张黎明. 三峡工程建成前后长江中下游防洪形势变化分析[J]. 人民长江, 2011, 42(1): 1-3, 12.
[3] 王才君, 郭生练, 刘 攀, 等. 三峡水库动态汛限水位洪水调度风险指标及综合评价模型研究[J]. 水科学进展, 2004, 15(3): 376-381.
[4] 刘 攀, 郭生练, 王才君, 等. 三峡水库动态汛限水位与蓄水时机选定的优化设计[J]. 水利学报, 2004, 35(7): 86-91.
[5] 覃 晖, 周建中, 王光谦, 等. 基于多目标差分进化算法的水库多目标防洪调度研究[J]. 水利学报, 2009, 40(5): 513-519.
[6] 卢程伟.流域水库群蓄滞洪区综合防洪调度研究与应用[D].武汉:华中科技大学,2019.
[7] 杨春花, 许继军, 董玲燕. 金沙江下游梯级水库配合三峡水库联合防洪调度效果分析[J]. raybet体育在线
院报, 2010, 27(10): 5-9.
[8] 顿晓晗, 周建中, 张勇传, 等. 水库实时防洪风险计算及库群防洪库容分配互用性分析[J]. 水利学报, 2019, 50(2): 209-217, 224.
[9] 王佰伟, 田富强, 胡和平. 三峡区间入流对三峡库区洪峰的影响分析[J]. 中国科学: 技术科学, 2011, 41(7): 981-991.
[10] HUANG K,YE L,CHEN L,et al.Risk Analysis of Flood Control Reservoir Operation Considering Multiple Uncertainties[J]. Journal of Hydrology,2018,565:672-684.
[11] 李 雨, 郭生练, 郭海晋, 等. 三峡水库提前蓄水的防洪风险与效益分析[J]. raybet体育在线
院报, 2013, 30(1): 8-14.
[12] 程锡勇. 三峡工程建设实录[J]. 档案记忆, 2019(7): 17-22.
[13] 郑守仁. 三峡工程与长江防洪体系[N]. 人民长江报, 2016-07-30(5).
[14] 钟平安. 水库防洪优化调度目标函数分析[J]. 水利经济, 1995, 13(1): 38-44.
[15] EUM H-I,KIM Y-O,PALMER R N.Optimal Drought Management Using Sampling Stochastic Dynamic Programming with a Hedging Rule[J]. Journal of Water Resources Planning and Management,2011,137(1):113-122.
[16] 罗成鑫, 周建中, 袁 柳. 流域水库群联合防洪优化调度通用模型研究[J]. 水力发电学报, 2018, 37(10): 39-47.
[17] 朱 迪, 梅亚东, 许新发, 等. 复杂防洪系统优化调度的三层并行逐步优化算法[J]. 水利学报, 2020, 51(10): 1199-1211.
[18] 王 成,曹庆磊.水库运行管理中优化调度的计算机算法研究[J].raybet体育在线
院报,2011,28(1):66-70.
[19] 朱 迪, 梅亚东, 许新发, 等. 赣江中下游防洪系统调度研究[J]. 水力发电学报, 2020, 39(3): 22-33.
[20] WANG Xian-xun, MEI Ya-dong, CAI Hao, et al. A New Fluctuation Index: Characteristics and Application to Hydro-Wind Systems[J]. Energies, 2016, 9(2): 114.
基金
国家自然科学基金联合基金项目重点支持项目(U1865201);国家自然科学基金面上项目(51979198)