不同应变率下干燥及饱水玄武岩纤维混凝土力学性能

贾文振, 李磊

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (8) : 170-176.

PDF(6309 KB)
PDF(6309 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (8) : 170-176. DOI: 10.11988/ckyyb.20220137
水工结构与材料

不同应变率下干燥及饱水玄武岩纤维混凝土力学性能

  • 贾文振1, 李磊2
作者信息 +

Mechanical Properties of Dry and Saturated Basalt Fiber Concrete at Different Strain Rates

  • JIA Wen-zhen1, LI Lei2
Author information +
文章历史 +

摘要

为研究加载速率和饱水作用对玄武岩纤维混凝土力学特性与破坏机理的综合影响,采用非金属超声波检测仪等装置对试件孔隙率、饱和含水率及纵波波速进行测量,利用万能试验机及直径为74 mm的分离式霍普金森压杆对干燥及饱水试件开展不同应变率下单轴压缩试验,分析应变率及饱水作用对试件纵波波速、应力-应变曲线、峰值应力及弹性模量的影响规律。结果表明:玄武岩纤维混凝土的孔隙度在1.89%~3.05%之间,试件孔隙度与饱和含水率间存在良好的线性正相关关系,饱水作用加快了试件内部纵波的传播速度;静载作用下饱水试件峰值应力低于干燥试件的8.6%,随着应变率的增加,饱水试件及干燥试件峰值应力及弹性模量均增大,试件存在明显的应变率效应,饱水试件应力增幅明显高于干燥试件,应变率达到130 s-1时干燥饱水试件应力基本保持一致,当应变率达到160 s-1时饱水试件峰值应力高于干燥试件的11.4%,弹性模量变化规律与强度变化保持一致;饱水作用对玄武岩纤维混凝土既存在侵蚀劣化作用,又存在水-纤维混凝土动力耦合强化作用,静载作用下水的软化作用及尖端水压力对裂隙的扩展作用降低试件抵抗外荷载能力,而动载作用下孔隙负压的存在及Stefan效应阻碍裂纹的扩展及试件的破坏,干燥及饱水试件应力相同时对应的临界应变率为130 s-1

Abstract

To investigate the combined effects of loading rate and water saturation on the mechanical properties and failure mechanisms of basalt fiber reinforced concrete, non-metallic ultrasonic detectors and other devices were used to measure porosity, water saturation, and longitudinal wave velocity of the specimens. Compression tests were performed on saturated and dry specimens under different strain rates, using a universal testing machine and a split Hopkinson pressure bar with a diameter of 74 mm. The impacts of strain rate and water saturation on peak stress, elastic modulus, longitudinal wave velocity, and stress-strain relationships were also analyzed. Results showed that the porosity of basalt fiber reinforced concrete ranged from 1.89% to 3.05%, and a positive linear correlation was observed between the porosity of the specimens and their saturation levels. Water saturation accelerated the propagation of longitudinal waves inside the specimens. Under static loading conditions, the peak stress of saturated specimens was 8.6% lower than that of dry specimens, while the peak stress and elastic modulus of both types of specimens increased with increasing strain rates. Results also revealed a significant strain rate effect on specimens, with stress increase more pronounced in saturated specimens compared to dry ones. When the strain rate reached 130 s-1, the stress levels in dry and saturated specimens were largely consistent. However, at a strain rate of 160 s-1, the peak stress of saturated specimens was 11.4% higher than that of dry specimens. The elastic modulus showed a similar behavior to the strength. Water saturation led to erosion and degradation of the concrete as well as dynamic coupling strengthening effects between the water and fiber. Under static loading, softening effects of water and crack extension due to hydrostatic pressure at the crack tip reduced the ability of specimens to resist external loads. Under dynamic loading, negative pressure within pores and the Stefan effect hindered crack extension and the failure of the specimens. The critical strain rate corresponding to the same stress levels for both dry and saturated specimens was found to be 130 s-1.

关键词

纤维混凝土 / 应变率 / 饱水作用 / 孔隙度 / 纵波波速 / 峰值应力 / 动力耦合强化

Key words

fiber concrete / strain rate / water saturation / porosity / longitudinal wave velocity / peak stress / dynamic coupling strengthening

引用本文

导出引用
贾文振, 李磊. 不同应变率下干燥及饱水玄武岩纤维混凝土力学性能[J]. raybet体育在线 院报. 2023, 40(8): 170-176 https://doi.org/10.11988/ckyyb.20220137
JIA Wen-zhen, LI Lei. Mechanical Properties of Dry and Saturated Basalt Fiber Concrete at Different Strain Rates[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 170-176 https://doi.org/10.11988/ckyyb.20220137
中图分类号: TU528   

参考文献

[1] 彭小芹. 土木工程材料[M]. 3版. 重庆: 重庆大学出版社, 2013: 76.
[2] 吴中伟. 纤维增强: 水泥基材料的未来[J]. 混凝土与水泥制品, 1999(1): 5-6.
[3] 胡 婧. 纤维高强混凝土耐久性试验研究[D]. 郑州: 郑州大学, 2018.
[4] 赵燕茹,刘道宽,王 磊,等.玄武岩纤维混凝土高温后力学性能试验研究[J].混凝土,2019(10):72-75.
[5] 林家富. 基于SEM的玄武岩纤维混凝土力学性能及微观结构研究[J]. 施工技术, 2018, 47(18): 97-101.
[6] 胡显奇, 申屠年. 连续玄武岩纤维在军工及民用领域的应用[J]. 高科技纤维与应用, 2005, 30(6): 7-13.
[7] 贺东青, 卢哲安. 短切玄武岩纤维混凝土的力学性能试验研究[J]. 河南大学学报(自然科学版), 2009, 39(3): 320-322.
[8] 何军拥, 田承宇. 玄武岩纤维水工高性能混凝土的耐久性研究[J]. 混凝土与水泥制品, 2013(5): 46-48.
[9] 王海龙, 李庆斌. 孔隙水对湿态混凝土抗压强度的影响[J]. 工程力学, 2006, 23(10): 141-144, 179.
[10] 刘保东,李鹏飞,李 林,等.混凝土含水率对强度影响的试验[J].北京交通大学学报,2011,35(1):9-12.
[11] 陈有亮, 邵 伟, 周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59-63, 88.
[12] 王海龙, 李庆斌. 不同加载速率下饱和混凝土的劈拉试验研究及强度变化机理[J]. 工程力学, 2007, 24(2): 105-109.
[13] 王海龙, 李庆斌. 不同加载速率下干燥与饱和混凝土抗压性能试验研究分析[J]. 水力发电学报, 2007, 26(1): 84-89.
[14] 王乾峰, 刘云贺, 彭 刚. 有压水环境中的混凝土动态抗压性能试验研究[J]. 实验力学, 2017, 32(3): 385-396.
[15] ROSSI P, MIER J G M, BOULAY C,et al. The Dynamic Behaviour of Concrete: Influence of Free Water[J]. Materials and Structures, 1992, 25(9): 509-514.
[16] 张永亮, 朱大勇, 李永池, 等. 干燥和饱和混凝土动态力学特性及其机理[J]. 爆炸与冲击, 2015, 35(6): 864-870.
[17] 白卫峰, 陈健云, 范书立. 饱和混凝土单轴拉伸动态统计损伤本构模型[J]. 防灾减灾工程学报, 2009, 29(1): 16-21.
[18] 李德超, 赵晨曦. 玄武岩纤维混凝土基本力学性能研究[J]. 公路, 2020, 65(6): 237-241.
[19] 齐 臻, 刘保华, 易 恋, 等. 冲击荷载下油菜秸秆灰分混凝土的动态力学性质[J]. 湖南农业大学学报(自然科学版), 2017, 43(3): 336-339.
[20] 王梦想, 汪海波, 宗 琦. 煤矿泥岩冲击动态力学特性与破裂破碎特征分析[J]. 振动与冲击, 2019, 38(4): 137-143.
[21] 胡宏彪. 超声波法检测混凝土缺陷的实验分析[J]. 江苏建筑职业技术学院学报, 2015, 15(2): 17-20.
[22] 邓华锋, 原先凡, 李建林, 等. 饱水度对砂岩纵波波速及强度影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1625-1631.
[23] 张煜仪, 吴 琰, 李 彪, 等. 基于声循环法的不同介质下超声波传播速度测试仪的设计[J]. 科学技术创新, 2019(25): 1-4.
[24] 孙 冰, 刘 涵, 袁 登, 等. 干燥与饱水状态下岩石混凝土一体两介质损伤特征研究[J]. 硅酸盐通报, 2019, 38(2): 482-487.
[25] 乔运峰. 不同饱水度砼在冻融与疲劳耦合作用下的损伤劣化与寿命预测[D]. 南京: 东南大学, 2018.
[26] 孟祥喜. 水岩作用下岩石损伤演化规律基础试验研究[D]. 青岛: 山东科技大学, 2018.
[27] 王海龙,李庆斌.饱和混凝土静动力抗压强度变化的细观力学机理[J].水利学报,2006,37(8):958-962,968.
[28] ZHENG D, LI Q. An Explanation for Rate Effect of Concrete Strength Based on Fracture Toughness Including Free Water Viscosity[J]. Engineering Fracture Mechanics, 2004, 71(16/17): 2319-2327.

基金

国家自然科学基金项目(51978150)

PDF(6309 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map