冻融作用下低热水泥混凝土抗冲磨性能评价

姜春萌, 李双喜, 蒋林华, 唐新军

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (8) : 163-169.

PDF(9779 KB)
PDF(9779 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (8) : 163-169. DOI: 10.11988/ckyyb.20220223
水工结构与材料

冻融作用下低热水泥混凝土抗冲磨性能评价

  • 姜春萌1,2,3, 李双喜1,3, 蒋林华1,2, 唐新军1
作者信息 +

Evaluation of Abrasion Resistance of Low Heat Cement Concrete under Freezing and Thawing

  • JIANG Chun-meng1,2,3, LI Shuang-xi1,3, JIANG Lin-hua1,2, TANG Xin-jun1
Author information +
文章历史 +

摘要

冻融损伤与冲磨破坏是寒冷地区水工混凝土的常见病害类型,为了科学评价冻融混凝土的磨蚀性能,以低热水泥混凝土为研究对象,采用快冻法将其冻至不同损伤程度后进行水下钢球法冲磨试验,研究了维氏硬度、损伤层厚度、磨蚀深度、磨蚀形貌和分形维数随冲磨时间的交互变化关系。结果表明:混凝土冻融破坏是一个由表及里损伤与整体劣化共同作用的连续且不同步过程,磨蚀是由过流面向其内部逐层发生的物理性破坏;随着冻融次数的增加,混凝土整体维氏硬度下降、损伤层厚度增加,相同冲磨时间下的磨蚀深度和表面分形维数增大;72 h冲磨周期内,经50、100和200次冻融循环的混凝土平均磨蚀深度均小于其损伤层厚度。研究所得冻融和冲磨共同作用下混凝土性能演化规律可为多因素作用下混凝土材料的损伤评价提供参考。

Abstract

Freeze-thaw damage and abrasive wear are common types of deterioration in hydraulic concrete in cold regions. To scientifically evaluate the abrasive performance of low heat cement concrete under freezing and thawing, abrasive tests were conducted on low heat cement concrete samples using underwater steel ball method under different degrees of freeze-thaw damage achieved through rapid freezing. The interactive relationships between Vickers hardness, damage layer thickness, abrasive depth, abrasive morphology, and fractal dimension with respect to abrasion age were investigated. Results indicate that freeze-thaw damage in concrete is a continuous and non-synchronous process influenced by surface-to-interior deterioration and overall degradation. Abrasion is a physical destruction occurring layer by layer from the surface to the interior. With an increasing number of freeze-thaw cycles, the overall Vickers hardness of the concrete decreases, and the damage layer thickness increases. Additionally, at the same abrasion age, the abrasive depth and surface fractal dimension increase. Within a 72-hour abrasive cycle, the average abrasive depth for concrete subjected to 50, 100, and 200 freeze-thaw cycles is less than the corresponding damage layer thickness. The obtained evolution patterns of concrete properties under the combined effect of freeze-thaw and abrasion provide references for the evaluation of multifactor-induced damage in concrete materials.

关键词

混凝土 / 冲磨性能 / 冻融作用 / 损伤层厚度 / 维氏硬度 / 低热水泥

Key words

concrete / abrasive performance / freeze-thaw / damaged layer thickness / Vickers hardness / low heat cement

引用本文

导出引用
姜春萌, 李双喜, 蒋林华, 唐新军. 冻融作用下低热水泥混凝土抗冲磨性能评价[J]. raybet体育在线 院报. 2023, 40(8): 163-169 https://doi.org/10.11988/ckyyb.20220223
JIANG Chun-meng, LI Shuang-xi, JIANG Lin-hua, TANG Xin-jun. Evaluation of Abrasion Resistance of Low Heat Cement Concrete under Freezing and Thawing[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 163-169 https://doi.org/10.11988/ckyyb.20220223
中图分类号: TU528.0   

参考文献

[1] SUI T, FAN L, WEN Z, et al. Study on the Properties of High Strength Concrete Using High Belite Cement[J]. Journal of Advanced Concrete Technology, 2004, 2(2): 201-206.
[2] 周世华. 乌东德高拱坝大坝混凝土长期性能试验研究[J]. raybet体育在线 院报, 2021, 38(10): 156-160.
[3] WANG L, YANG H Q, ZHOU S H, et al. Mechanical Properties, Long-Term Hydration Heat, Shinkage Behavior and Crack Resistance of Dam Concrete Designed with Low Heat Portland (LHP) Cement and Fly Ash[J]. Construction and Building Materials, 2018, 187: 1073-1091.
[4] 姜春萌, 宫经伟, 唐新军. 低热水泥胶凝体系力学及热学综合性能评价[J]. raybet体育在线 院报,2019, 36(5): 116-120.
[5] MORI K, FUKUNAGA T, SUGIYAMA M, et al. Hydration Properties and Compressive Strength Development of Low Heat Cement[J]. Journal of Physics and Chemistry of Solids, 2012, 73(11): 1274-1277.
[6] 樊启祥, 杨华全, 李文伟, 等. 两种低热与中热硅酸盐水泥混凝土热力学特性对比分析[J]. raybet体育在线 院报, 2018, 35(12): 133-137.
[7] 樊启祥, 李文伟, 李新宇. 低热硅酸盐水泥大坝混凝土施工关键技术研究[J]. 水力发电学报, 2017, 36(4): 11-17.
[8] WANG L, YANG H Q, DONG Y, et al. Environmental Evaluation, Hydration, Pore Structure, Volume Deformation and Abrasion Resistance of Low Heat Portland (LHP) Cement-Based Materials[J]. Journal of Cleaner Production, 2018, 203: 540-558.
[9] 何 真. 混凝土磨蚀冲蚀与其它环境因素的耦合作用[J]. 水利学报, 2015(2): 138-145.
[10] ROSENQVIST M, PHAM L-W, TERZIC A, et al. Effects of Interactions between Leaching, Frost Action and Abrasion on the Surface Deterioration of Concrete[J]. Construction and Building Materials, 2017, 149: 849-860.
[11] 刘彦书. 高性能混凝土在冻磨联合作用下的性能研究[D]. 哈尔滨: 东北林业大学, 2007.
[12] 刘明辉, 韩 冰, 马金泉. 冻融循环作用下混凝土抗冲磨性能研究[J]. 土木工程学报,2019,52(7):100-109.
[13] 白 银, 叶小盛, 刘海祥, 等. 冻融循环与水流冲磨耦合作用下混凝土损伤进程[J]. 水利水电快报, 2019, 40(11): 64-69.
[14] JIANG C, JIANG L, TANG X, et al. Evaluation of Frost Damage on High-Belite Cement Concrete Based on Vickers Hardness and Ultrasonic Theory[J]. Magazine of Concrete Research, 2022, 74(9): 451-465.
[15] HASAN M S, LI S S, ZSAKI A M, et al. Measurement of Abrasion on Concrete Surfaces with 3D Scanning Technology[J]. Journal of Materials in Civil Engineering, 2019,, doi:10.1061/(ASCE)MT.1943-5533.0002837.
[16] GB/T 200—2017,中热硅酸盐水泥、低热硅酸盐水泥[S]. 北京: 中国标准出版社, 2017.
[17] SL 352—2006,水工混凝土试验规程[S]. 北京: 中国水利水电出版社, 2006.
[18] 张 峰, 蔡建军, 李树忱, 等. 混凝土冻融损伤厚度的超声波检测[J]. 深圳大学学报(理工版), 2012, 29(3):207-210.
[19] REN L, XIE L Z, LI C B, et al. Compressive Fracture of Brittle Geomaterial: Fractal Features of Compression-Induced Fracture Surfaces and Failure Mechanism[J]. Advances in Materials Science and Engineering, 2014, doi:10.1155/2014/814504.
[20] CHOI S, BOLANDER J E. A Topology Measurement Method Examining Hydraulic Abrasion of High Workability Concrete[J]. KSCE Journal of Civil Engineering, 2012, 16(5): 771-778.

基金

新疆农业大学高层次人才科研培育计划项目(2522GCCRC);国家自然科学基金项目(52269028)

PDF(9779 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map