循环高温淬火后花岗岩三点弯曲试验研究

张帆, 吕敦波

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (7) : 96-103.

PDF(6475 KB)
PDF(6475 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (7) : 96-103. DOI: 10.11988/ckyyb.20220153
岩土工程

循环高温淬火后花岗岩三点弯曲试验研究

  • 张帆, 吕敦波
作者信息 +

Experimental Study on Three Point Bending of Granite after High Temperature Quenching and Thermal Cycling

  • ZHANG Fan, LÜ Dun-bo
Author information +
文章历史 +

摘要

高温作用对地下热储层岩石的力学性质具有重要的影响。为研究高温对花岗岩Ⅰ型断裂韧度的影响,对400 ℃循环高温淬火(1、3、5、7次)后的半圆弯曲花岗岩试样进行三点弯曲试验。分析了循环高温淬火后花岗岩试样的破坏特征、荷载-位移曲线和断裂韧度随淬火次数的变化规律。结果表明,随着热循环次数的增加,花岗岩的质量和密度逐渐减小,峰值荷载不断降低,断裂面粗糙度逐渐增加,断裂韧度明显下降。研究结果可为地热能开发以及地下岩体工程的安全性和稳定性提供理论依据。

Abstract

High temperatures have a significant impact on the mechanical properties of rocks in geothermal reservoirs. To investigate the influence of high temperature on the fracture toughness of Type I granite, three-point bending tests were conducted on semi-circular bending (SCB) samples of granite subjected to cyclic high-temperature quenching at 400 ℃ for different numbers of cycles (1, 3, 5, and 7 cycles). The failure characteristics, load-displacement curves, and fracture toughness of the granite specimens after cyclic high-temperature quenching were also analyzed. Results demonstrate that as the number of thermal cycles increases, the mass and density of granite gradually decrease, the peak load continuously declines, the roughness of the fracture surface progressively intensifies, and the fracture toughness noticeably reduces. These findings provide a theoretical basis for the development of geothermal energy and the safety of underground engineering structures.

关键词

花岗岩 / 高温淬火 / 热循环 / 断裂韧度 / 三点弯曲试验

Key words

granite / high temperature quenching / thermal cycling / fracture toughness / three-point bending test

引用本文

导出引用
张帆, 吕敦波. 循环高温淬火后花岗岩三点弯曲试验研究[J]. raybet体育在线 院报. 2023, 40(7): 96-103 https://doi.org/10.11988/ckyyb.20220153
ZHANG Fan, LÜ Dun-bo. Experimental Study on Three Point Bending of Granite after High Temperature Quenching and Thermal Cycling[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 96-103 https://doi.org/10.11988/ckyyb.20220153
中图分类号: TU458.3   

参考文献

[1] 季 科, 郭健翔, 毕学军, 等. 高温干热岩采热系统钻探技术研究进展[J]. 科学技术与工程, 2021, 21(28): 11900-11909.
[2] 李亚博, 翟宇星, 张恩华, 等. 高温加热-水冷却循环作用对花岗岩的物理力学特性影响[J]. 中国高新科技, 2021(8): 67-70.
[3] BREEDE K, DZEBISASHVILI K, LIU X, et al. A Systematic Review of Enhanced (or Engineered) Geothermal Systems: Past, Present and Future[J]. Geothermal Energy, 2013, 1(1): 1-27.
[4] OLASOLO P,JUÁREZ M C,MORALES M P,et al. Enhanced Geothermal Systems (EGS): A Review[J]. Renewable and Sustainable Energy Reviews,2016,56:133-144.
[5] ZHOU C,WAN Z,ZHANG Y,et al. Experimental Study on Hydraulic Fracturing of Granite under Thermal Shock[J].Geothermics,2018,71:146-155.
[6] ZHANG F, ZHAO J, HU D, et al. Laboratory Investigation on Physical and Mechanical Properties of Granite after Heating and Water-Cooling Treatment[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 677-694.
[7] 朱振南, 田 红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 169-176.
[8] 何 涛, 曹雅娴. 高温后岩石三轴变形及渗透率演化规律[J]. raybet体育在线 院报, 2018, 35(11): 107-111, 116.
[9] 黄真萍, 张 义, 吴伟达. 遇水冷却的高温大理岩力学与波动特性分析[J].岩土力学,2016,37(2):367-375.
[10]郭 政, 赵星光, 李鹏飞, 等. 热处理北山花岗岩热传导特性研究[J]. raybet体育在线 院报, 2018, 35(3): 45-51, 58.
[11]郤保平, 赵阳升. 600℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892-898.
[12]ZHANG F, DAI C, ZHANG Y, et al. Experimental Investigations on the Tensile Behaviour of Granite after Heating and Water-Cooling Treatment[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7): 5909-5920.
[13]YIN T B, SHU R H, LI X B, et al. Comparison of Mechanical Properties in High Temperature and Thermal Treatment Granite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1926-1937.
[14]闵 明, 张 强, 蒋斌松, 等. 实时高温下北山花岗岩劈裂试验及声发射特性[J]. raybet体育在线 院报, 2020, 37(3): 108-113.
[15]HUANG S, XIA K. Effect of Heat-Treatment on the Dynamic Compressive Strength of Longyou Sandstone[J]. Engineering Geology, 2015, 191: 1-7.
[16]张 帆, 胡 维, 郭翰群, 等. 热处理后花岗岩纳米压痕试验研究[J]. 岩土力学, 2018, 39(增刊1): 235-243.
[17]余 莉, 彭海旺, 张 钰, 等. 水-热循环花岗岩的物理力学性质试验研究[J]. 科学技术与工程, 2021, 21(2): 703-713.
[18]李 春, 胡耀青, 张纯旺, 等. 不同温度循环冷却作用后花岗岩巴西劈裂特征及其物理力学特性演化规律研究[J]. 岩石力学与工程学报, 2020, 39(9): 1797-1807.
[19]KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267-274.
[20]YIN T, LI Q, LI X. Experimental Investigation on Mode I Fracture Characteristics of Granite after Cyclic Heating and Cooling Treatments[J]. Engineering Fracture Mechanics, 2019, 222: 106740.
[21]赵子江, 刘大安, 崔振东, 等. 半圆盘三点弯曲法测定页岩断裂韧度(KIC)的实验研究[J]. 岩土力学, 2018, 39(增刊1): 258-266.
[22]吴 琦, 蒙世仟, 蒋买勇, 等. 热循环作用下大理岩力学特性试验研究[J]. 中国农村水利水电, 2020(6): 148-153.
[23]TSE R, CRUDEN D M. Estimating Joint Roughness Coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
[24]JIA Y,LU Y,ELSWORTH D,et al. Surface Characteristics and Permeability Enhancement of Shale Fractures Due to Water and Supercritical Carbon Dioxide Fracturing[J]. Journal of Petroleum Science and Engineering,2018,165:284-297.
[25]吴 刚, 翟松韬, 王 宇. 高温下花岗岩的细观结构与声发射特性研究[J]. 岩土力学, 2015, 36(增刊1): 351-356.
[26]COLLIN M, ROWCLIFFE D. Analysis and Prediction of Thermal Shock in Brittle Materials[J]. Acta Materialia, 2000, 48(8): 1655-1665.
[27]RONG G, PENG J, CAI M, et al. Experimental Investigation of Thermal Cycling Effect on Physical and Mechanical Properties of Bedrocks in Geothermal Fields[J]. Applied Thermal Engineering, 2018, 141: 174-185.
[28]ZHOU Z, CAI X, DU X, et al. Strength and Filtration Stability of Cement Grouts in Porous Media[J]. Tunnelling and Underground Space Technology, 2019, 89: 1-9.
[29]ZHOU Z,CAI X, LI X,et al. Dynamic Response and Energy Evolution of Sandstone under Coupled Static-Dynamic Compression:Insights from Experimental Study into Deep Rock Engineering Applications[J].Rock Mechanics and Rock Engineering,2020,53(3):1305-1331.
[30]ZHANG Y, SUN Q, HE H, et al. Pore Characteristics and Mechanical Properties of Sandstone under the Influence of Temperature[J]. Applied Thermal Engineering, 2017, 113: 537-543.
[31]韩铁林, 师俊平, 陈蕴生. 冻融循环和干湿循环作用下砂岩断裂韧度及其与强度特征相关性的试验研究[J]. 固体力学学报, 2016, 37(4): 348-359.
[32]WENG L, WU Z, LIU Q. Influence of Heating/Cooling Cycles on the Micro/Macrocracking Characteristics of Rucheng Granite under Unconfined Compression[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1289-1309.

基金

国家自然科学基金面上项目(51979100);山东省鲁南地质工程勘察院开放基金项目(LNY2020-Z08)

PDF(6475 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map