基于天地协同与深度学习的灌区地下水位模拟

陈文龙, 杨云丽, 张煜, 胡祖康

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (7) : 88-95.

PDF(15527 KB)
PDF(15527 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (7) : 88-95. DOI: 10.11988/ckyyb.20220061
农业水利

基于天地协同与深度学习的灌区地下水位模拟

  • 陈文龙1, 杨云丽1, 张煜2, 胡祖康3
作者信息 +

Simulation of Groundwater Level in Irrigation Area Based on Sky-Earth Cooperation and Deep Learning

  • CHEN Wen-long1, YANG Yun-li1, ZHANG Yu2, HU Zu-kang3
Author information +
文章历史 +

摘要

为了探究天地协同与深度学习的联合效果,利用灌区地面和遥感的天地协同序列观测数据,以降水、土壤湿度、地下水位历史观测量、哨兵-2遥感观测值作为地下水位的模拟因子,采用基于多层GRU网络的深度学习模型建立地面和遥感观测因子与地下水位的内在联系,进行灌区地下水位模拟的研究,并在南北方两处灌区研究区进行地下水位模拟试验和结果分析。试验结果表明,基于天地协同与深度学习的灌区地下水位模拟模型具有自行建立外界环境因素和灌区地下水位内在关系的能力,明显优于仅有地下水位观测值作为模拟因子的对比模型,具有较好的地下水位模拟效果,以及在不同地理环境下的模型适用性。该模型具有一定的应用潜力,能够为灌区的农作物种植和水资源管理提供决策信息支持。

Abstract

In this study, we aim to simulate the groundwater level in irrigation area by utilizing sequential observation data from ground-based and remote sensing platforms. A deep learning model based on a multi-layer GRU network was developed for this purpose. Precipitation, soil moisture, historical measurements of groundwater levels, and Sentinel-2 remote sensing observations were used as simulation factors. Furthermore, groundwater level simulation experiments and result analyses are conducted for two irrigation areas located in North and South China. The experimental findings reveal that the groundwater level simulation model, which incorporates the synergy between sky-earth observations and deep learning, effectively establishes the intrinsic relationship between external environmental factors and groundwater levels within the irrigation area. The model is apparently superior to comparative models that merely considers groundwater level as it demonstrates impressive simulation performance, exhibits applicability in diverse geographical environments, and holds promising potential for practical applications. It can provide valuable decision-making support for crop cultivation and water resources management in irrigation area.

关键词

地下水位模拟 / 深度学习 / 天地协同 / 灌区 / 遥感

Key words

groundwater level simulation / deep learning / sky-earth cooperation / irrigation area / remote sensing

引用本文

导出引用
陈文龙, 杨云丽, 张煜, 胡祖康. 基于天地协同与深度学习的灌区地下水位模拟[J]. raybet体育在线 院报. 2023, 40(7): 88-95 https://doi.org/10.11988/ckyyb.20220061
CHEN Wen-long, YANG Yun-li, ZHANG Yu, HU Zu-kang. Simulation of Groundwater Level in Irrigation Area Based on Sky-Earth Cooperation and Deep Learning[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 88-95 https://doi.org/10.11988/ckyyb.20220061
中图分类号: P641    TP181   

参考文献

[1] 张阳阳, 陈 喜, 高 满, 等. 基于元数据分析的西北干旱区生态地下水位埋深及其影响因素[J]. 南水北调与水利科技(中英文), 2020,18(5): 57-65.
[2] 崔恩贵, 张富有, 崔京京. 人民胜利渠灌区地下水位数值处理与灰色预测[J]. 中国水运(下半月), 2015, 15(2):87-89, 98.
[3] MAO X, JIA J, LIU C, et al. A Simulation and Prediction of Agricultural Irrigation on Groundwater in Well Irrigation Area of the Piedmont of Mt. Taihang, North China[J]. Hydrological Processes, 2005, 19(10): 2071-2084.
[4] 管孝艳, 王少丽, 高占义, 等. 基于多变量时间序列CAR模型的地下水埋深预测[J]. 农业工程学报, 2011, 27(7):64-69.
[5] 管新建,逯洪波, 徐清山. 基于BP神经网络的区域地下水位动态预测[J]. 人民黄河, 2006, 28(8):40-41, 79.
[6] 范庆来,刘国华,王 军,等. 地下水位动态变化预测中的MGM(1, n)模型[J].农机化研究,2004,26(3):165-167.
[7] EMAMGHOLIZADEH S, MOSLEMI K, KARAMI G. Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)[J].Water Resources Management, 2014, 28(15): 5433-5446.
[8] 罗 浩, 王 红, 施长惠. 黄河三角洲地区地下水埋深遥感反演[J]. 国土资源遥感, 2013,25(3):145-152.
[9] GROENEVELD D P.Remotely-sensed Groundwater Evapotranspiration from Alkali Scrub Affected by Declining Water Table[J].Journal of Hydrology,2008,358(3/4): 294-303.
[10]史晓亮, 周政辉, 王馨爽. 基于遥感技术的干旱区地下水监测研究[J]. 人民黄河, 2019,41(7):87-91.
[11]ZHANG Z, YANG X, LI H, et al. Application of a Novel Hybrid Method for Spatiotemporal Data Imputation: A Case Study of the Minqin County Groundwater Level[J]. Journal of Hydrology, 2017, 553: 384-397.
[12]WANG N, ZHANG D, CHANG H, et al. Deep Learning of Subsurface Flow via Theory-guided Neural Network[J]. Journal of Hydrology, 2020, 584: 124700.
[13]ZHANG J, ZHU Y, ZHANG X, et al. Developing a Long Short-Term Memory (LSTM) Based Model for Predicting Water Table Depth in Agricultural Areas[J]. Journal of Hydrology, 2018, 561: 918-929.
[14]WUNSCH A, LIESCH T, BRODA S. Forecasting Groundwater Levels Using Nonlinear Autoregressive Networks with Exogenous Input (NARX)[J]. Journal of Hydrology, 2018, 567: 743-758.
[15]周维博,曾发琛.井渠结合灌区地下水动态预报及适宜渠井用水比分析[J].灌溉排水学报,2006,25(1):6-9.
[16]Magzum Nurolla, 张 彦, 张嘉星, 等. 引黄灌区地下水动态变化影响因素及种植结构优化分析: 人民胜利渠灌区为例[J]. 中国农村水利水电, 2018(3): 190-195.
[17]GUYON I, ELISSEEFF A. An Introduction to Variable and Feature Selection[J]. Journal of Machine Learning Research, 2003, 3: 1157-1182.
[18]YENEHUN A, NIGATE F, BELAY A S, et al. Groundwater Recharge and Water Table Response to Changing Conditions for Aquifers at Different Physiography: The Case of a Semi-humid River Catchment, Northwestern Highlands of Ethiopia[J]. Science of the Total Environment, 2020, 748: 142243.
[19]GUO C, LIU T, NIU Y, et al. Quantitative Analysis of the Driving Factors for Groundwater Resource Changes in Arid Irrigated Areas[J]. Hydrological Processes, 2021, 35(1), doi:https://doi.org/10.1002/hyp.13967.
[20]TAWEESIN K, SEEBOONRUANG U, SARAPHIROM P. The Influence of Climate Variability Effects on Groundwater Time Series in the Lower Central Plains of Thailand[J]. Water, 2018, 10(3): 290.
[21]王晓勇, 朱立峰,董佳秋, 等. 干旱-半干旱区下垫面变化对地下水位的影响[J]. 西北地质, 2019, 52(2): 227-235.
[22]YU H L, LIN Y C. Analysis of Space-Time Non-stationary Patterns of Rainfall–Groundwater Interactions by Integrating Empirical Orthogonal Function and Cross Wavelet Transform Methods[J]. Journal of Hydrology, 2015, 525: 585-597.
[23]张展羽, 梁振华, 冯宝平, 等. 基于主成分-时间序列模型的地下水位预测[J].水科学进展, 2017, 28(3):415-420.
[24]丁启振, 周金龙, 杜明亮, 等. 新疆石河子-昌吉地区2016―2020年地下水位动态特征分析[J]. 灌溉排水学报, 2022,41(2):109-117.
[25]CHEN X, HU Q. Groundwater Influences on Soil Moisture and Surface Evaporation[J]. Journal of Hydrology, 2004, 297(1/2/3/4): 285-300.
[26]JACKSON T J. Remote Sensing of Soil Moisture: Implications for Groundwater Recharge[J]. Hydrogeology Journal, 2002, 10(1): 40-51.
[27]刘景利, 史奎桥, 梁 涛, 等. 锦州玉米地地下水位、降水与土壤含水量的关系分析[J]. 安徽农学通报, 2008, 14(20): 126-130.
[28]秦俊桃. 武威盆地不同土地利用类型下的地下水位时空动态分析[J]. 中国水利水电科学研究院学报, 2014,12(3):287-290.
[29]SAHOO S, RUSSO T A, ELLIOTT J, et al. Machine Learning Algorithms for Modeling Groundwater Level Changes in Agricultural Regions of the U.S[J]. Water Resources Research, 2017, 53(5): 3878-3895.
[30]王 娜, 李强子, 杜 鑫, 等. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017, 21(4): 519-530.
[31]冯海霞, 秦其明, 李滨勇, 等. 基于SWIR-Red光谱特征空间的农田干旱监测新方法[J]. 光谱学与光谱分析, 2011,31(11):3069-3073.
[32]唐荣林, 王晟力, 姜亚珍, 等. 基于地表温度—植被指数三角/梯形特征空间的地表蒸散发遥感反演综述[J]. 遥感学报, 2021,25(1):65-82.
[33]贾 坤, 李强子. 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013,35(12):2507-2516.
[34]NGUYEN M, BAEZ-VILLANUEVA O, BUI D, et al. Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon)[J]. Remote Sensing, 2020, 12(2): 281.
[35]张东彦, 戴 震, 徐新刚, 等. 基于时序Sentinel-2影像的现代农业园区作物分类研究[J]. 红外与激光工程, 2021,50(5):262-272.
[36]刘宇晨, 高永年. Sentinel时序影像的长江流域地表水体提取[J]. 遥感学报, 2022, 26(2): 358-372.
[37]闫丹丹, 李静泰, 薛媛媛, 等. 基于Sentinel-2的江苏省植被生物物理特征反演[J]. 环境科学学报, 2022, 42(1): 70-79.
[38]CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches[EB/OL]. 2014: arXiv: 1409.1259. https://arxiv.org/abs/1409.1259.
[39]KETKAR N, SANTANA E. Deep Learning with Python[M].New York:Springer, 2017.
[40]ANGIULLI F, FASSETTI F. Detecting Distance-based Outliers in Streams of Data[C]//Proceedings of the sixteenth ACM conference on Conference on information and knowledge management. November 6 - 10, 2007, Lisbon, Portugal. New York: ACM, 2007: 811-820.

基金

云南省高分三期水利应用课题(89-Y50G31-9001-22/23-05);国家重点研发计划项目(2018YFC1508302)

PDF(15527 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map