为了解祁连山国家公园土壤重金属的污染程度、生态风险以及空间分布特征,选取祁连山南麓腹地高寒沼泽草甸土壤为研究对象,分析测定了沼泽草甸土壤0~10 cm与10~20 cm中的V、Cr、Mn、Ni、Cu、Zn、Cd、Pb、As、Hg共10种重金属元素的含量。采用污染系数和富集系数对重金属在不同部位的富集规律及污染特征进行研究,并辅以人为贡献率进行补充和验证,最后通过潜在生态风险指数量化评定风险状况。结果表明:① 在0~10 cm和10~20 cm沼泽草甸土壤中,Cr、Zn、Hg的平均含量高于青海湖土壤背景值,其中Cr与Zn呈略微富集,而Hg的富集最为显著且人为贡献率达到了30%;V、Mn、Ni、Cu、Cd、Pb、As的平均含量与自然值无异,人为贡献率均为负值,并随着深度增加呈增大趋势,需要注意的是在部分样点存在点源污染。② 重金属潜在生态风险值从大到小依次为Hg>Cd>As>Ni>Cu>Pb>Cr>V>Zn>Mn,单项潜在生态风险指数显示除Hg以外,其他9种重金属均处于1级轻微生态污染风险状态;沼泽草甸土壤重金属综合潜在生态风险指数(RI)在0~10 cm和10~20 cm都达到了2级中等生态污染等级,Hg对综合潜在生态风险的贡献率达到50%以上。总体来说,沼泽草甸土壤中重金属污染具有一定的潜在风险,在对沼泽湿地污染治理过程中应予以足够的重视,此研究可为祁连山南麓腹地生态环境的整治与改善提供基础性的数据资料。
Abstract
The purpose of this research is to understand the pollution degree, ecological risk and spatial distribution characteristics of heavy metals in the soil of Qilian Mountain National Park. The content of V, Cr, Mn, Ni, Cu, Zn, Cd, Pb, As, and Hg in 0-10 cm and 10-20 cm of swamp meadow soils in the southern piedmont of Qilian Mountains were tested. The pollution coefficient and enrichment coefficient were used to study the enrichment rules and pollution characteristics of heavy metals in different parts. The human contribution rate was used to supplement and verify the results. Finally, the risk status was quantitatively assessed through the potential ecological risk index. Results showed that: 1) The average content of Cr, Zn, and Hg in the 0-10 cm and 10-20 cm swamp meadow soils are higher than the background value of Qinghai Lake soil. Cr and Zn are slightly enriched while Hg is the most obviously enriched with the human contribution rate reaching 30%. 2) The average content of V, Mn, Ni, Cu, Cd, Pb, and As shows no difference with the natural values. The human contribution rate is negative and shows an increasing trend as depth increases. It is worthy of attention that point source pollution exists at some sampling points. 3) The potential ecological risk value of heavy metals in descending order is Hg>Cd>As>Ni>Cu>Pb>Cr>V>Zn>Mn. Except for Hg, the other nine heavy metals are all at a status of level-I ecological pollution risk, which means slightly polluted. 4) The comprehensive potential ecological risk index (RI) of heavy metals in swamp meadow soil reached level-II medium ecological pollution in both 0-10 cm and 10-20 cm. The contribution rate of Hg to RI reached more than 50%. In general, heavy metal pollution in swamp meadow soil poses potential risk. Sufficient attention should be paid to the pollution control of swamp wetland. This research can provide basic data for the governance and improvement of ecosystem in the hinterland of the southern foothills of the Qilian Mountains.
关键词
沼泽草甸土壤 /
重金属 /
污染评价 /
潜在生态风险 /
祁连山南麓
Key words
swamp meadow soil /
heavy metals /
pollution evaluation /
potential ecological risk /
southern piedmont of Qilian Mountains
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王艺涵, 刘胤序, 刘海红, 等. 青海典型内陆河流域地表水化学组成及其重金属分布特征[J]. 生态学杂志, 2018, 37(3): 734-742.
[2] 杨 安, 王小霞, 邢文聪, 等. 青海省河流和湖泊表层沉积物及其周边土壤重金属的来源与风险评估[J]. 天津师范大学学报(自然科学版), 2020, 40(6): 44-53.
[3] 常华进, 曹广超, 陈克龙, 等. 青海湖流域沙柳河下游沉积物中重金属污染风险评价[J]. 地理科学, 2017, 37(2): 259-265.
[4] WU J, DUAN D P, LU J, et al. Inorganic Pollution around the Qinghai-Tibet Plateau: An Overview of the Current Observations[J]. Science of the Total Environment, 2016, 550: 628-636.
[5] 杨 安, 王艺涵, 胡 健, 等. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学, 2020, 41(2): 886-894.
[6] LU R, JIA F, GAO S, et al. Holocene Aeolian Activity and Climatic Change in Qinghai Lake Basin, Northeastern Qinghai-Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 1-10.
[7] 王 琪, 吴成永, 陈克龙, 等. 基于多光谱遥感图像的青海湖流域土壤有机质估算初探[J]. 土壤, 2019, 51(1): 160-167.
[8] 侯 磊, 李文斌. 高寒生态脆弱区新建公路旁土壤重金属潜在生态风险[J]. 安全与环境学报, 2021, 21(4): 1832-1838.
[9] 刘 敏, 邓 玮, 赵良元, 等. 长江源区主要河流表层沉积物及沿岸土壤重金属分布特征及来源[J]. raybet体育在线
院报, 2021, 38(7): 143-149.
[10] SOTO-JIMNEZ M, PAEZ-OSUNA F, RUIZ-FERNANDEZ A C. Geochemical Evidences of the Anthropogenic Alteration of Trace Metal Composition of the Sediments of Chiricahueto Marsh (SE Gulf of California)[J]. Environmental Pollution, 2003, 125(3): 423-432.
[11] 姚书春, 薛 滨. 长江下游青弋江、水阳江水系湖泊沉积物中重金属变化特征研究[J]. 第四纪研究, 2010, 30(6): 1177-1185.
[12] ROACH A C. Assessment of Metals in Sediments from Lake Macquarie, New South Wales, Australia, Using Normalisation Models and Sediment Quality Guidelines[J]. Marine Environmental Research, 2005, 59(5): 453-472.
[13] N'GUESSAN Y M, PROBST J L, BUR T, et al. Trace Elements in Stream Bed Sediments from Agricultural Catchments (Gascogne Region, SW France): Where Do They Come From?[J]. Science of the Total Environment, 2009, 407(8): 2939-2952.
[14] 郭笑笑, 刘丛强, 朱兆洲, 等. 土壤重金属污染评价方法[J]. 生态学杂志, 2011, 30(5): 889-896.
[15] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115.
[16] DUNG T, CAPPUYNS V, SWENNEN R, et al. From Geochemical Background Determination to Pollution Assessment of Heavy Metals in Sediments And Soils[J]. Reviews in Environmental Science and Bio/Technology, 2013, 12(4): 335-353.
[17] 王 平, 曹军骥, 吴 枫. 青海湖流域表层土壤环境背景值及其影响因素[J]. 地球环境学报, 2010, 1(3): 189-200.
[18] 中国国家环境保护局. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990: 329-501.
[19] 李少华, 王学全, 高 琪, 等. 青海湖流域河流生态系统重金属污染特征与风险评价[J]. 环境科学研究, 2016, 29(9): 1288-1296.
[20] 常华进, 曹广超, 陈克龙. 青海倒淌河末端沉积物中重金属含量及其指示意义[J]. 土壤通报, 2014, 45(3): 728-733.
[21] 常华进, 曹广超, 陈克龙, 等. 青海湖流域东北部河流沉积物和土壤剖面记录的重金属污染特征[J]. 地球与环境, 2016, 44(6): 671-677.
[22] 常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55 (1): 91-99.
[23] BRUMSACK H J. Geochemistry of Recent TOC-rich Sediments from the Gulf of California and the Black Sea[J]. Geologische Rundschau, 1989, 78(3): 851-882.
[24] CALVERT S E, PEDERSEN T F. Geochemistry of Recent Oxicand Anoxic Marine Sediments: Implications for the Geological Record[J]. Marine Geology, 1993, 113 (1/2): 67-88.
[25] MORFORD J L, EMERSON S. The Geochemistry of Redox Sensitive Trace Metals in Sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.
[26] PIPER D Z, PERKINS R B. A Moden vs. Permian Black Shale—The Hydrography, Primary Productivity, and Water-column Chemistry of Deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
[27] AYALA M B, SANDMAN G. Activities of Cu-containing Protein in Cu-depleted Pea Leaves[J]. Physiological Plantarum, 1998, 72(4) : 801-806.
[28] 王若锦, 邵天杰, 卫佩茹.环青海湖地区表层土壤重金属富集含量及其生态风险评价[J]. 干旱区研究, 2021, 38(2): 411-420.
[29] 田郁溟, 吴 枫, 张 琳, 李福春, 等. 人类活动影响下青海湖环湖地区土壤的生态环境特征[J]. 安全与环境工程, 2013, 20(3): 77-81.
基金
国家自然科学基金项目(42171011);甘肃省青年科技基金计划项目(20JR10RA140);青海省自然科学基金项目(2021-ZJ-918)