三峡水库的运行显著改变了河流原有的水动力条件,引起江心洲形态冲淤调整。为进一步探究三峡水库蓄水对江心洲形态调整的影响,选取库区5个典型江心洲为研究对象,采用Landsat遥感影像以及三峡水库2003—2017年实测的地形和水沙资料,定量分析了不同阶段江心洲的形态调整及时空演变特征。研究表明:伴随三峡库区水位波动,江心洲出露面积逐渐减少,河床呈现累计淤积态势,加快了江心洲的冲淤变化,其中156 m蓄水高程(2006年10月—2008年10月)的淤积强度最大,而2012年后淤积显著变缓;在空间尺度上,距离大坝越远,江心洲淤积强度越小,变动回水区江心洲因受采砂影响,河床局部地形出现不规则变化;同时,受三峡回水影响,江心洲发育模式改变,洲尾顺水流朝下游发育淤长,洲头受清水冲刷垮塌。
Abstract
The operation of the Three Gorges Reservoir has significantly altered the original hydrodynamic conditions of the river and led to adjustments in the morphology of central bars. To further investigate the effects of Three Gorges Reservoir impoundment on the morphological adjustments of central bars, we selected five typical central bars in the reservoir area as study objects. Using Landsat remote sensing images and terrain and water-sediment data from 2003 to 2017, we quantitatively analyzed the spatial and temporal evolution characteristics of the morphological adjustments of the central bars at different stages. Results showed that with the fluctuation of the water level in the Three Gorges Reservoir, the exposed area of central bars gradually decreased, and the riverbed showed an accumulated siltation trend, which accelerated the morphological changes of central bars. The strongest siltation occurred at a water storage elevation of 156 m (October, 2006 to 2008), while siltation significantly attenuated after 2012. At spatial scale, the further away from the dam, the smaller the siltation intensity of central bars. Due to sand mining, central bars in the area affected by the backflow of the reservoir were subjected to irregular changes in local riverbed topography. Meanwhile, the backflow of the Three Gorges Reservoir changed the development mode of central bars. Specifically, the downstream end of the bars developed and was silted towards the downstream, while the upstream end was eroded by clear water flow.
关键词
江心洲 /
冲淤调整 /
水沙变化 /
Landsat遥感影像 /
形态时空演变 /
三峡水库
Key words
central bar /
scouring and silting adjustment /
flow-sediment variation /
Landsat remote sensing image /
morphological spatial and temporal evolution /
Three Gorges Reservoir
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李志威, 王兆印, 贾艳红, 等. 三峡水库蓄水前后长江中下游江心洲的演变及其机理分析[J]. 长江流域资源与环境, 2015, 24(1): 65-73.
[2] 王梅力, 陈秀万, 王平义, 等. 长江上游边滩形态及与河道的关系[J]. 武汉大学学报(工学版), 2015, 48(4): 466-470.
[3] 李志威. 三江源河床演变与湿地退化机制研究[D]. 北京: 清华大学, 2013.
[4] 李双江, 谢 龙. 长江上游塘土坝河段水流特性及河床演变分析[J]. 重庆交通大学学报(自然科学版), 2013, 32(4): 673-676, 686.
[5] 赵维阳, 杨云平, 张华庆, 等. 三峡大坝下游近坝段沙质河床形态调整及洲滩联动演变关系[J]. 水科学进展, 2020, 31(6): 862-874.
[6] DAI Z, LIU J T. Impacts of Large Dams on Downstream Fluvial Sedimentation: An Example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze) River[J]. Journal of Hydrology, 2013, 480: 10-18.
[7] LUNT I A, BRIDGE J S. Evolution and Deposits of a Gravelly Braid Bar, Sagavanirktok River, Alaska[J]. Sedimentology, 2004, 51(3): 415-432.
[8] REDOLFI M, WELBER M, CARLIN M, et al. Morphometric Properties of Alternate Bars and Water Discharge: A Laboratory Investigation[J].Earth Surface Dynamics, 2020, 8(3):789-808.
[9] 柏承绍,李志威,胡旭跃,等. 分汊河段江心洲尾斜流改善的水动力数值模拟[J].水运工程,2020(8):120-128.
[10] LOU Y,MEI X,DAI Z,et al. Evolution of the Mid-Channel Bars in the Middle and Lower Reaches of the Changjiang (Yangtze) River from 1989 to 2014 Based on the Landsat Satellite Images: Impact of the Three Gorges Dam[J]. Environmental Earth Sciences, 2018,77(10):394. Doi: 10.1007/s12665-018-7576-2.
[11] CHURCH M, RICE S P. Form and Growth of Bars in a Wandering Gravel-Bed River[J]. Earth Surface Processes and Landforms, 2009, 34(10): 1422-1432.
[12] 薛兴华, 常 胜, 宋鄂平. 三峡水库蓄水后荆江洲滩变化特征[J]. 地理学报, 2018, 73(9): 1714-1727.
[13] LI Z, WANG Z, PAN B,et al. The Development Mechanism of Gravel Bars in Rivers[J]. Quaternary International, 2014, 336: 73-79.
[14] 叶 晨, 许泽星, 关见朝, 等. 山区河流植被洲滩河段水沙运动特性试验研究[J]. 工程科学与技术, 2020, 52(1): 75-81.
[15] 李志威, 王兆印, 余国安. 冲积河流的沙洲发育模式与机理[J]. 应用基础与工程科学学报, 2013, 21(3): 489-500.
[16] 张 为, 吴美琴, 李思璇, 等. 三峡水库蓄水后城陵矶至九江段河道冲淤调整机理[J]. 水科学进展, 2020, 31(2): 162-171.
[17] 宋禹辰. 温中坝河段卵石输移规律与航道治理对策研究[D]. 重庆: 重庆交通大学, 2017.
[18] 李文杰,杨胜发,付旭辉,等.三峡水库运行初期的泥沙淤积特点[J]. 水科学进展,2015,26(5):676-685.
[19] 王渺林. 三峡水库蓄水前后重庆涪陵河段河床演变分析[J]. 水资源开发与管理, 2018,16(4): 47-49.
[20] 肖 毅,杨胜发,王 涛,等. 三峡水库蓄水初期库区航道条件分析[J]. 水运工程,2019(11):92-99, 138.
[21] 王志平. 嘉陵江凤仪库区航道推移质运动特性研究及治理[D]. 重庆: 重庆交通大学, 2018.
[22] 江小青, 孔繁忠. 三峡库区库岸稳定与岸线变化趋势分析[J]. 长江技术经济, 2020, 4(2): 5-11.
[23] 王梅力, 陈秀万, 王平义, 等. 长江上游叙渝段弯道平面形态及碍航特征[J]. 水运工程, 2015(6): 87-92.
[24] 唐小娅, 童思陈, 许光祥, 等. 三峡水库汛期泥沙淤积对坝前水位的滞后响应[J]. 水科学进展, 2019, 30(4): 528-536.
[25] 吕 娜. 山区弯曲分汊河道演变特征试验研究[D]. 重庆: 重庆交通大学, 2010.
[26] 杨绪海, 熊海滨, 李义天, 等. 三峡水库蓄水后下荆江河段典型洲滩调整机理[J]. 湖泊科学, 2021, 33(3): 819-829.
[27] LI W, YANG S, XIAO Y,et al. Rate and Distribution of Sedimentation in the Three Gorges Reservoir, Upper Yangtze River[J]. Journal of Hydraulic Engineering, 2018, 144(8), Doi: 10.1061/(ASCE)HY.1943-7900.0001486.
[28] 朱玲玲, 董先勇, 陈泽方. 金沙江下游梯级水库淤积及其对三峡水库影响研究[J]. raybet体育在线
院报, 2017, 34(3): 1-7.
[29] 陈 建. 水库调度方式与水库泥沙淤积关系研究[D]. 武汉:武汉大学, 2007.
基金
国家自然科学基金项目(51779241);中国科学院青年创新促新会项目(2018417,2021385);三峡后续工作科研项目(5000002021BF40001);重庆科技局中央引导地方科技发展专项(2021000069)