为探究升钟湖冬季氮和磷的内源静态释放风险及释放规律,于2018年冬季在升钟湖湖区设置了15个采样点,采集了各样点的水样和沉积物样品,测定了水体常规理化指标及沉积物间隙水氮、磷含量,并进行了沉积物氮、磷室内模拟静态释放试验。结果表明:①升钟湖沉积物间隙水总氮(TN)含量在1.846~5.293 mg/L之间,氨氮(NH+4-N)是主要形态,含量在0.437~3.603 mg/L之间,硝态氮(NO-3-N)次之,含量在0.545~1.452 mg/L之间,各形态氮、磷具有较为明显的空间分布差异。②升钟湖沉积物间隙水总磷(TP)含量在0.194~0.561 mg/L之间,其中溶解性正磷酸盐(PO3-4-P)含量在0.029~0.417 mg/L之间。③升钟湖在冬季存在氮和磷的内源静态释放,相对而言,磷的释放风险更大,释放规律更加明显,而氮的释放主要是通过硝态氮(NO-3-N)的形式进行,基本不进行氨氮(NH+4-N)的释放,湖泊中心区域氮、磷的内源释放风险低于其他区域。研究成果可为升钟湖的管理政策实施及其水资源的可持续利用提供科学依据。
Abstract
The aim of this research is to explore the risk and law of endogenous static release of nitrogen and phosphorus of Shengzhong Lake in winter. In the winter of 2018, water samples and sediment samples were collected from 15 sampling sites in Shengzhong Lake. The conventional physical and chemical indexes of water body and the nitrogen and phosphorus content in sediment interstitial water were determined. Meanwhile, the endogenous static release of nitrogen and phosphorus in sediments were simulated in laboratory. Results unveil that i) the total nitrogen content in the sediment interstitial water of Shengzhong Lake ranges from 1.846 mg/L to 5.293 mg/L. Ammonia nitrogen is the dominant form of total nitrogen, reaching 0.437-3.603 mg/L, followed by nitrate nitrogen, at 0.545-1.452 mg/L. Various forms of nitrogen and phosphorus differ remarkably in spatial distribution. ii) The content of total phosphorus in interstitial water is ranged from 0.194 mg/L to 0.561 mg/L, of which the content of dissolved orthophosphate stands between 0.029 mg/L and 0.417 mg/L. iii) Endogenous static release of nitrogen and phosphorus was observed in the Shengzhong Lake in winter. The risk of phosphorus release is greater and its release regularity is more obvious; whereas nitrogen mainly releases in the form of nitrate nitrogen, and ammonia nitrogen barely releases. The risk of endogenous release of nitrogen and phosphorus in the central area of the lake is lower than that in other areas. The research findings offer scientific basis for the implementation of management policies and sustainable utilization of water resources in the Shengzhong Lake.
关键词
沉积物 /
间隙水 /
氮 /
磷 /
静态释放 /
升钟湖
Key words
sediment /
interstitial water /
nitrogen /
phosphorus /
static release /
Shengzhong Lake
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、面积与空间分布[J]. 中国科学: 地球科学, 2011, 41(3): 394-401.
[2] 国家环境保护总局.2020年中国环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2020.
[3] LI B, DING S M, FAN C X, et al. Estimation of Releasing Fluxes of Sediment Nitrogen and Phosphorus in Fubao Bay in Dianchi Lake[J]. Journal of Environmental science, 2008, 29(1): 114-20.
[4] OUYANG W, SHAN Y S, HAO F H, et al. The Effect on Soil Nutrients Resulting From Land Use Transformations in a Freeze-Thaw Agricultural Ecosystem[J]. Soil and Tillage Research, 2013, 3132: 30-38.
[5] REDDY K R,FISHER M M,IVANOFF D. Resuspension and Diffusive Flux of Nitrogen and Phosphorus in a Hypereutrophic Lake[J]. Journal of Environmental Quality Volume, 1996, 25(2): 363-371.
[6] 范成新, 张 路, 包先明, 等. 太湖沉积物-水界面生源要素迁移机制及定量化:2. 磷释放的热力学机制及源-汇转换[J]. 湖泊科学, 2006(3): 207-217.
[7] 苏青青, 宋林旭, 刘德富, 等. 三峡水库香溪河沉积物氮含量和氨氮释放特征[J]. 水生态学杂志, 2019, 40(3): 1-7.
[8] RAAPHORST W V, KLOOSTERHUIS H T. Phosphate Sorption in Superficial Intertidal Sediments[J]. Marine Chemistry, 1994, 48(1): 1-16.
[9] 张 云, 王圣瑞, 段昌群, 等. 滇池沉水植物生长过程对间隙水氮、磷时空变化的影响[J]. 湖泊科学, 2018, 30(2): 314-325.
[10] 谢 平. 浅水湖泊内源磷负荷季节变化的生物驱动机制[J]. 中国科学: D辑, 2005(增刊2): 11-23.
[11] BOEHRER B, MATZINGER A, SCHIMMELE M. Similarities and Differences in the Annual Temperature Cycles of East German Mining Lakes[J]. Limnologica-Ecology and Management of Inland Waters, 2000, 30(3): 271-279.
[12] PAN A, HU L H, LI T S, et al. Assessing the Eutrophication of Shengzhong Reservoir Based on Grey Clustering Method[J]. Chinese Journal of Population, Resources and Environment, 2009, 7(2): 83-87.
[13] 何冬琼, 张秋劲, 刘 佳, 等. 升钟水库浮游植物的生物多样性调查及时空分布[J]. 中国环境监测, 2013, 29(1): 30-33.
[14] 黄银春, 梁时军, 陈兰英. 升钟水库近十年水质演变趋势及富营养化治理对策[J]. 四川环境, 2019, 38(4): 42-50.
[15] 唐 颖, 陈兰英, 蒋祖斌, 等. 升钟湖水体叶绿素a动态特征及其影响因子分析[J]. 环境监测管理与技术, 2020, 32(1) : 56-59.
[16] 杨 蓉. 升钟水库生态环境保护与污染防治对策研究[J]. 四川环境, 2010, 29(1) : 34-42.
[17] 左云霞, 李铁松, 李成明. 四川升钟水库水质评价及污染负荷分析[J]. 四川环境, 2012, 31(5) :54-59.
[18] 唐 洁. 升钟水库水质监测评价及污染防治方案[D]. 绵阳: 西南科技大学, 2020.
[19] 郑 坤. 关于升钟水库旅游综合开发的分析[J]. 安徽农业科学, 2018, 46(2):90-93.
[20] 中国科学院南京地理与湖泊研究所. 湖泊调查技术规程[M]. 北京: 科学出版社, 2015.
[21] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 科学出版社, 2002.
[22] 范成新. 湖泊沉积物调查规范[M]. 北京: 科学出版社, 2018.
[23] 刘静静, 董春颖, 宋英琦, 等. 杭州西湖北里湖沉积物氮磷内源静态释放的季节变化及通量估算[J]. 生态学报, 2012, 32(24):7932-7939.
[24] 陈 蕾, 郑西来, 刘 杰. 产芝水库底泥和其间隙水中氮、磷分布特征[J]. 环境污染与防治, 2011, 33(2): 44-48.
[25] DE VISSCHER A, VAN CLEEMPUT O. Simulation Model for Gas Diffusion and Methane Oxidation in Landfill Cover Soil[J]. Waste Management, 2003,23(7): 581-591.
[26] 毛 亮, 罗丛强, 石彭灵, 等. 湖泊水、沉积物氮磷的空间分析及其耦合特征研究:以大通湖为例[J]. 海洋与湖沼, 2017, 48(5): 952-959.
[27] 文帅龙, 吴 涛, 杨 洁, 等. 冬季大黑汀水库沉积物-水界面氮磷赋存特征及交换通量[J]. 中国环境科学, 2019, 39(3): 1217-1225.
[28] 胡 知. 深水湖泊磷形态分布特征及其影响因素[D]. 重庆:重庆大学,2017.
[29] 汤宝靖, 陈 雷, 姜 霞, 等. 巢湖沉积物磷的形态及其与间隙水磷的关系[J]. 农业环境科学学报, 2017, 28(9): 1867-1873.
[30] MU D, YUAN D K, FENG H, et al. Nutrient Fluxes Across Sediment-Water Interface in Bohai Bay Coastal Zone, China[J]. Marine Pollution Bulletinl, 2017, 114(2): 705-714.
[31] CORNWELL J C,OWENS M S. Quantifying Sediment Nitrogen Releases Associated with Estuarine Dredging[J]. Aquatic Geochemistry, 2011, 17(4/5): 499.
[32] JIN X C, WANG S R, BU Q Y. Laboratory Experiments on Phosphorous Release from the Sediments of 9 Lakes in the Middle and Lower Reaches of Yangtze River Region, China[J]. Water, Air, and Soil Pollution, 2006, 176(1/2/3/4): 233-251.
[33] KAZEM D B, MAHMOUD R N, HADI R, et al. Bioavailability and Geochemical Speciation of Phosphorus in Surface Sediments of the Southern Caspian Sea[J]. Marine Pollution Bulletin, 2018, 126:51-57.
基金
国家自然科学基金项目(41807458);成都市水生态文明建设研究重点项目(SST2019-2020-06)